Thu, 13 Mar 2008

11:00 - 12:00
DH 3rd floor SR

OxMOS Team Meeting

Siobhan Burke and Yasemin Sengul
(Oxford)
Thu, 24 Jan 2008

11:00 - 12:00
DH 3rd floor SR

OxMOS Team Meeting

Bernhard Langwallner and Konstantinos Koumatos
(Oxford)
Mon, 21 Jan 2008
11:00
DH 3rd floor SR

High Performance Computational Mechanics in Marenostrum supercomputer

Mariano Vazquez
(Barcelona)
Abstract

Computational Mechanics (CM) has become

a scientific discipline in itself, being High Perfomance Computational

Mechanics (HPCM) a key sub-discipline. The effort for the most efficient use of

distributed memory machines provides a different perspective to CM scientists

relative to a wide range of topics, from the very physics of the problem to

solve to the numerical method used. Marenostrum supercomputer is the largest

facility in Europe and the 5th in the world (top500.org - Spring 2007). This

talk describes the research lines in the CASE Dpt. of the BSC applied to

Aerospace, Bio-mechanics, Geophysics or Environment, through the development of

Alya, the in-house HPCM code for complex coupled problems capable of running

efficiently in large distributed memory facilities.

Mon, 14 Jan 2008

15:00 - 16:00
DH 3rd floor SR

Phase field modelling and simulation of some interface problems

Professor Qiang Du
(Penn State University)
Abstract

Professor Qiang Du will go over some work on modelling interface/microstructures with curvature dependent energies and also the effect of elasticity on critical nuclei morphology.

Fri, 18 Jan 2008
13:15
DH 3rd floor SR

Probabilistic Quantification of Financial Uncertainty

Hans Follmer
(Berlin)
Abstract

We discuss recent advances in the probabilistic analysis of financial risk and uncertainty, including risk measures and their dynamics, robust portfolio choice, and some asymptotic results involving large deviations

Fri, 23 Nov 2007
09:00
DH 3rd floor SR

7th Week

Msc Industrial Sponsors present potential problems to the assembled faculty and Postdocs
Tue, 13 Nov 2007
10:00
DH 3rd floor SR

Random Dynamical Systems for Biological Time Series Analysis

Dr. Max Little
Abstract

Many biological time series appear nonlinear or chaotic, and from biomechanical principles we can explain these empirical observations. For this reason, methods from nonlinear time series analysis have become important tools to characterise these systems. Nonetheless, a very large proportion of these signals appear to contain significant noise. This randomness cannot be explained within the assumptions of pure deterministic nonlinearity, and, as such, is often treated as a nuisance to be ignored or otherwise mitigated. However, recent work points to this noise component containing valuable information. Random dynamical systems offer a unified framework within which to understand the interplay between deterministic and stochastic dynamical sources. This talk will discuss recent attempts to exploit this synthesis of stochastic and deterministic dynamics in biological signals. It will include a case study from speech science.

Subscribe to DH 3rd floor SR