Fri, 31 Oct 2008
11:45
Gibson 1st Floor SR
Mon, 17 Nov 2008
17:00
Gibson 1st Floor SR

A hyperbolic pertubation of the Navier-Stokes equations

Geneviève Raugel
(Université Paris Sud)
Abstract
Y. Brenier, R. Natalini and M. Puel have considered a ``relaxation" of the Euler equations in R2. After an approriate scaling, they have obtained the following hyperbolic version of the Navier-Stokes equations, which is similar to the hyperbolic version of the heat equation introduced by Cattaneo, $$\varepsilon u_{tt}^\varepsilon + u_t^\varepsilon -\Delta u^\varepsilon +P (u^\varepsilon \nabla u^\varepsilon) \, = \, Pf~, \quad (u^\varepsilon(.,0), u_t^\varepsilon(.,0)) \, = \, (u_0(.),u_1(.))~, \quad (1) $$ where $P$ is the classical Leray projector and $\varepsilon$ is a small, positive number. Under adequate hypotheses on the forcing term $f$, we prove global existence and uniqueness of a mild solution $(u^\varepsilon,u_t^\varepsilon) \in C^0([0, +\infty), H^{1}({\bf R}^2) \times L^2({\bf R}^2))$ of (1), for large initial data $(u_0,u_1)$ in $H^{1}({\bf R}2) \times L^2({\bf R}2)$, provided that $\varepsilon>0$ is small enough, thus improving the global existence results of Brenier, Natalini and Puel (actually, we can work in less regular Hilbert spaces). The proof uses appropriate Strichartz estimates, combined with energy estimates. We also show that $(u^\varepsilon,u_t^\varepsilon)$ converges to $(v,v_t)$ on finite intervals of time $[t_0,t_1]$, $0 <+ \infty$, when $\varepsilon$ goes to $0$, where $v$ is the solution of the corresponding Navier-Stokes equations $$ v_t -\Delta v +P (v\nabla v) \, = \, Pf~, \quad v(.,0) \, = \, u_0~. \quad (2) $$ We also consider Equation (1) in the three-dimensional case. Here we expect global existence results for small data. Under appropriate assumptions on the forcing term, we prove global existence and uniqueness of a mild solution $(u^\varepsilon,u_t^\varepsilon) \in C^0([0, +\infty), H^{1+\delta}({\bf R}^3) \times H^{\delta}({\bf R}^3))$ of (1), for initial data $(u_0,u_1)$ in $H^{1 +\delta}({\bf R}^3) \times H^{\delta}({\bf R}^3)$ (where $\delta >0 $ is a small positive number), provided that $\varepsilon > 0$ is small enough and that $u_0$ and $f$ satisfy a smallness condition. (Joint work with Marius Paicu)
Fri, 17 Oct 2008

13:30 - 14:30
Gibson 1st Floor SR

Using global invariant manifolds to understand metastability in Burgers equation with small viscosity

Margaret Beck
(Brown University, US)
Abstract

The large-time behavior of solutions to Burgers equation with

small viscosity is described using invariant manifolds. In particular,

a geometric explanation is provided for a phenomenon known as

metastability,which in the present context means that

solutions spend a very long time near the family of solutions known as

diffusive N-waves before finally converging to a stable self-similar

diffusion wave. More precisely, it is shown that in terms of

similarity, or scaling, variables in an algebraically weighted $L^2$

space, the self-similar diffusion waves correspond to a one-dimensional

global center manifold of stationary solutions. Through each of these

fixed points there exists a one-dimensional, global, attractive,

invariant manifold corresponding to the diffusive N-waves. Thus,

metastability corresponds to a fast transient in which solutions

approach this ``metastable" manifold of diffusive N-waves, followed by

a slow decay along this manifold, and, finally, convergence to the

self-similar diffusion wave.

Thu, 22 Jan 2009

12:30 - 13:30
Gibson 1st Floor SR

Wave Propagation in One-Dimensional Granular Lattices

Mason Porter
(University of Oxford)
Abstract

I will discuss the investigatation of highly nonlinear solitary waves in heterogeneous one-dimensional granular crystals using numerical computations, asymptotics, and experiments. I will focus primarily on periodic arrangements of particles in experiments in which stiffer/heavier stainless stee are alternated with softer/lighter ones.

The governing model, which is reminiscent of the Fermi-Pasta-Ulam lattice, consists of a set of coupled ordinary differential equations that incorporate Hertzian interactions between adjacent particles. My collaborators and I find good agreement between experiments and numerics and gain additional insight by constructing an exact compaction solution to a nonlinear partial differential equation derived using long-wavelength asymptotics. This research encompasses previously-studied examples as special cases and provides key insights into the influence of heterogeneous, periodic lattice on the properties of the solitary waves.

I will briefly discuss more recent work on lattices consisting of randomized arrangements of particles, optical versus acoustic modes, and the incorporation of dissipation.

Mon, 06 Oct 2008

11:30 - 12:30
Gibson 1st Floor SR

Decomposition Theorem, Orthogonality principle and Localization principle - the three components of the sufficiency proof (I)

Yury Grabovsky
(Temple University, US)
Abstract
The proof of quasiconvexity based sufficient conditions for strong local minima in vectorial variational problems consists of three major parts: the Decomposition Theorem, the Orthogonality principle and the Localization principle. The first and the last are the most technical.
In these talks I will explain the technical difficulties and the ways in which they were overcome.
Subscribe to Gibson 1st Floor SR