Research group
Geometry
Tue, 22 Oct 2013

14:00 - 15:00
L4

Noncommutative algebraic geometry of isolated hypersurface singularities I

Toby Dyckerhoff
(Oxford)
Abstract

The concept of a matrix factorization was originally introduced by Eisenbud to study syzygies over local rings of singular hypersurfaces. More recently, interactions with mathematical physics, where matrix factorizations appear in quantum field theory, have provided various new insights. I will explain how matrix factorizations can be studied in the context of noncommutative algebraic geometry based on differential graded categories. We will see the relevance of the noncommutative analogue of de Rham cohomology in terms of classical singularity theory. Finally, I will outline how the Kapustin-Li formula for the noncommutative Serre duality pairing (originally computed via path integral methods) can be mathematically explained using a combination of homological perturbation theory and local duality.
Partly based on joint work with Daniel Murfet.

Tue, 19 Nov 2013

15:45 - 16:45
L4

RFH=FH

Will Merry
(ETH Zurich)
Abstract

Rabinowitz Floer homology (RFH) is the Floer theory associated to the Rabinowitz action functional. One can think of this functional as a Lagrange multiplier functional of the unperturbed action functional of classical mechanics. Its critical points are closed orbits of arbitrary period but with fixed energy.

This fixed energy problem can be transformed into a fixed period problem on an enlarged phase space. This provides a way to see RFH as a "standard" Hamiltonian Floer theory, and allows one to treat RFH on an equal footing to other related Floer theories. In this talk we explain how this is done and discuss several applications.

Joint work with Alberto Abbondandolo and Alexandru Oancea.

Tue, 29 Oct 2013

15:45 - 16:45
L4

Quasimaps, wall-crossings, and Mirror Symmetry II

Ionut Ciocan-Fontanine
(Minnesota)
Abstract

Quasimaps provide compactifications, depending on a stability parameter epsilon, for moduli spaces of maps from nonsingular algebraic curves to a large class of GIT quotients. These compactifications enjoy good properties and in particular they carry virtual fundamental classes. As the parameter epsilon varies, the resulting invariants are related by wall-crossing formulas. I will present some of these formulas in genus zero, and will explain why they can be viewed as generalizations (in several directions) of Givental's toric mirror theorems. I will also describe extensions of wall-crossing to higher genus, and (time permitting) to orbifold GIT targets as well.
The talk is based on joint works with Bumsig Kim, and partly also with Daewoong Cheong and with Davesh Maulik.

Tue, 29 Oct 2013

14:00 - 15:00
L4

Quasimaps, wall-crossings, and Mirror Symmetry I

Ionut Ciocan-Fontanine
(Minnesota)
Abstract

Quasimaps provide compactifications, depending on a stability parameter epsilon, for moduli spaces of maps from nonsingular algebraic curves to a large class of GIT quotients. These compactifications enjoy good properties and in particular they carry virtual fundamental classes. As the parameter epsilon varies, the resulting invariants are related by wall-crossing formulas. I will present some of these formulas in genus zero, and will explain why they can be viewed as generalizations (in several directions) of Givental's toric mirror theorems. I will also describe extensions of wall-crossing to higher genus, and (time permitting) to orbifold GIT targets as well.
The talk is based on joint works with Bumsig Kim, and partly also with Daewoong Cheong and with Davesh Maulik.

Subscribe to Algebraic and Symplectic Geometry Seminar