[Geometry and Algebra workshop] Analytic geometry as relative algebraic geometry II
[Geometry and Algebra workshop] Analytic geometry as relative algebraic geometry I
[Geometry and Algebra workshop] A factorization structure on the Hilbert scheme of points on a surface
Noncommutative deformations and birational geometry II
Abstract
I will speak about recent work with Michael Wemyss (arXiv:1309.0698), applying noncommutative deformation theory to study the birational geometry of 3-folds. In particular, I will explain how every flippable or floppable rational curve in a 3-fold has a naturally associated algebra of noncommutative deformations, even in the singular setting. We investigate the properties of this algebra, and indicate how to calculate it in examples using quiver techniques. This gives new information about the (commutative) geometry of 3-folds, and in particular provides a new tool to differentiate between flops.
As a further application, we show how the noncommutative deformation algebra controls the homological properties of a floppable curve. In this setting, work of Bridgeland and Chen yields a Fourier-Mukai flop-flop functor which acts on the derived category of the 3-fold (assuming any singularities are at worst Gorenstein terminal). We show that this functor can be described as a spherical twist about the universal family over the noncommutative deformation algebra.
In the second part, I will talk about further work in progress, and explain some more technical details, such as the use of noncommutative deformation functors, and the categorical mutations of Iyama and Wemyss. If there is time, I will also give some higher-dimensional examples, and discuss situations involving chains of intersecting floppable curves. In this latter case, deformations, intersections and homological properties are encoded by the path algebra of a quiver, generalizing the algebra of noncommutative deformations.
Noncommutative deformations and birational geometry I
Abstract
I will speak about recent work with Michael Wemyss (arXiv:1309.0698), applying noncommutative deformation theory to study the birational geometry of 3-folds. In particular, I will explain how every flippable or floppable rational curve in a 3-fold has a naturally associated algebra of noncommutative deformations, even in the singular setting. We investigate the properties of this algebra, and indicate how to calculate it in examples using quiver techniques. This gives new information about the (commutative) geometry of 3-folds, and in particular provides a new tool to differentiate between flops.
As a further application, we show how the noncommutative deformation algebra controls the homological properties of a floppable curve. In this setting, work of Bridgeland and Chen yields a Fourier-Mukai flop-flop functor which acts on the derived category of the 3-fold (assuming any singularities are at worst Gorenstein terminal). We show that this functor can be described as a spherical twist about the universal family over the noncommutative deformation algebra.
In the second part, I will talk about further work in progress, and explain some more technical details, such as the use of noncommutative deformation functors, and the categorical mutations of Iyama and Wemyss. If there is time, I will also give some higher-dimensional examples, and discuss situations involving chains of intersecting floppable curves. In this latter case, deformations, intersections and homological properties are encoded by the path algebra of a quiver, generalizing the algebra of noncommutative deformations.
Bridgeland 40 conference: $E_n$-deformations and quantizations of derived stacks II
Abstract
We review the theory of $E_n$-algebras (roughly, algebras with $n$ compatible multiplications) and discuss $E_n$-deformation theory in the sense of Lurie. We then describe, to the best of our ability, the use of $E_n$-deformation theory in the on-going work of Calaque, Pantev, Toen, Vezzosi, and Vaquie about deformation quantization of derived stacks with shifted Poisson structure.
Bridgeland 40 conference: $E_n$-deformations and quantizations of derived stacks I
Abstract
We review the theory of $E_n$-algebras (roughly, algebras with $n$ compatible multiplications) and discuss $E_n$-deformation theory in
the sense of Lurie. We then describe, to the best of our ability, the use of $E_n$-deformation theory in the on-going work of Calaque, Pantev, Toen,
Vezzosi, and Vaquie about deformation quantization of derived stacks with shifted Poisson structure.
Hamiltonian reduction and t-structures in (quantum) symplectic geometry
Abstract
Many interesting examples of singular symplectic algebraic varieties and their symplectic resolutions are built by Hamiltonian reduction. There is a corresponding construction of "quantum Hamiltonian reduction" which is of substantial interest to representation theorists. It starts from a twisted-equivariant D-module, an analogue of an algebraic vector bundle (or coherent sheaf) on a moment map fiber, and produces an object on the quantum analogue of the symplectic resolution. In order to understand how far apart the quantisation of the singular symplectic variety and its symplectic resolution can be, one wants to know "what gets killed by quantum Hamiltonian reduction?" I will give a precise answer to this question in terms of effective combinatorics. The answer has consequences for exactness of direct images, and thus for t-structures, which I will also explain. The beautiful geometry behind the combinatorics is that of a stratification of a GIT-unstable locus called the "Kirwan-Ness stratification." The lecture will not assume familiarity with D-modules, nor with any previous talks by the speaker or McGerty in this series. The new results are joint work with McGerty.