15:45
15:45
15:45
Separating invariants and local cohomology
Abstract
The study of separating invariants is a new trend in Invariant Theory and a return to its roots: invariants as a classification tool. For a finite group acting linearly on a vector space, a separating set is simply a set of invariants whose elements separate the orbits o the action. Such a set need not generate the ring of invariants. In this talk, we give lower bounds on the size of separating sets based on the geometry of the action. These results are obtained via the study of the local cohomology with support at an arrangement of linear subspaces naturally arising from the action.
(Joint with Jack Jeffries)
A geometric approach to Hall algebras
Abstract
The Hall algebra can be constructed using the Waldhausen S-construction. We will give a systematic recipe for this and show how it extends naturally to give a bi-algebraic structure. As a result we obtain a more transparent proof of Green's theorem about the bi-algebra structure on the Hall algebra.
Towards a compactification of the moduli space of K3 surfaces of degree 2
Abstract
Ever since moduli spaces of polarised K3 surfaces were constructed in the 1980's, people have wondered about the question of compactification: can one make the moduli space of K3 surfaces compact by adding in some boundary components in a "nice" way? Ideally, one hopes to find a compactification that is both explicit and geometric (in the sense that the boundary components provide moduli for degenerate K3's). I will present on joint work in progress with V. Alexeev, which aims to solve the compactification problem for the moduli space of K3 surfaces of degree 2.
The Bayer-Macri map for compact support
Abstract
I'll discuss recent joint work with Arend Bayer and Ziyu Zhang in which we define a nef divisor class on moduli spaces of Bridgeland-stable objects in the derived category of coherent sheaves with compact support, generalising earlier work of Bayer and Macri for smooth projective varieties. This work forms part of a programme to study the birational geometry of moduli spaces of Bridgeland-stable objects in the derived category of varieties that need not be smooth and projective.
The Cohomological McKay Correspondence and Symplectic Cohomology
Abstract
Suppose that we have a finite quotient singularity $\mathbb C^n/G$ admitting a crepant resolution $Y$ (i.e. a resolution with $c_1 = 0$). The cohomological McKay correspondence says that the cohomology of $Y$ has a basis given by irreducible representations of $G$ (or conjugacy classes of $G$). Such a result was proven by Batyrev when the coefficient field $\mathbb F$ of the cohomology group is $\mathbb Q$. We give an alternative proof of the cohomological McKay correspondence in some cases by computing symplectic cohomology+ of $Y$ in two different ways. This proof also extends the result to all fields $\mathbb F$ whose characteristic does not divide $|G|$ and it gives us the corresponding basis of conjugacy classes in $H^*(Y)$. We conjecture that there is an extension to certain non-crepant resolutions. This is joint work with Alex Ritter.
On short time existence of Lagrangian mean curvature flow
Abstract
One of the simplest, and yet largely still open, questions that one can ask about special Lagrangian submanifolds is whether they exist in a given homology class. One possible approach to this problem is to evolve a given Lagrangian submanifold under mean curvature flow in the hope of reaching a special Lagrangian submanifold in the same homology class. It is known, however, that even for 'nice' initial conditions the flow will develop singularities in finite time.
I will talk about a joint work with Tom Begley, in which we prove a short time existence result for Lagrangian mean curvature flow, where the initial condition is a Lagrangian submanifold of complex Euclidean space with a certain type of singularity. This is a first step to proving, as conjectured by Joyce, that one may 'continue' Lagrangian mean curvature flow after the occurrence of singularities.
(COW SEMINAR) Monodromy and derived equivalences
Abstract
This is will be a progress report on our long-ongoing joint work with Bezrukavnikov on lifting the monodromy of the quantum differential equation for symplectic resolutions to automorphisms of their derived categories of coherent sheaves. I will attempt to define the ingredient that go both into the problem and into its solution.
(COW SEMINAR) Higgs bundles and determinant divisors
Abstract
Following an idea of Gaiotto, a symplectic representation of a complex Lie group G defines a complex Lagrangian subvariety inside the moduli space of G-Higgs bundles. The talk will discuss the case of G=SL(2) and its link with determinant divisors, or equivalently Brill-Noether loci, in the moduli space of semistable SL(2)-bundles.
(COW SEMINAR) Categorification of shifted symplectic geometry using perverse sheaves
Abstract
Given a (-1)-shifted symplectic derived scheme or stack (X,w) over C equipped with an orientation, we explain how to construct a perverse sheaf P on the classical truncation of X so that its hypercohomology H*(P) can be regarded as a categorification of (or linearisation of) X. Given also a Lagrangian morphism L -> X equipped with a relative orientation, we outline a programme in progress to construct a natural morphism of constructible complexes on the truncation of L from the (shifted) constant complex on L to a suitable pullback of P to L. The morphisms and resulting hypercohomology classes are expected to satisfy various identities under products, composition of Lagrangian correspondences, etc. This programme will have interesting applications, such as proving associativity of a Kontsevich-Soibelman type COHA multiplication on H*(P) when X is the derived moduli stack of coherent sheaves on a Calabi-Yau 3-fold Y, and defining Lagrangian Floer cohomology and the Fukaya cat!
egory of an algebraic or complex symplectic manifold S.