Research group
Geometry
Tue, 09 Feb 2016

15:45 - 16:45
L4

A new duality for categories of B-branes

Ed Segal
(Inperial College London)
Abstract

Given an Artin stack $X$, there is growing evidence that there should be an associated `category of B-branes', which is some subcategory of the derived category of coherent sheaves on $X$. The simplest case is when $X$ is just a vector space modulo a linear action of a reductive group, or `gauged linear sigma model' in physicists' terminology. In this case we know some examples of what the category B-branes should be. Hori has conjectured a physical duality between certain families of GLSMs, which would imply that their B-brane categories are equivalent. We prove this equivalence of categories. As an application, we construct Homological Projective Duality for (non-commutative resolutions of) Pfaffian varieties.

Tue, 08 Mar 2016

15:45 - 16:45
L4

The wall-crossing formula and spaces of quadratic differentials

Tom Bridgeland
(Sheffield)
Abstract

The wall-crossing behaviour of Donaldson-Thomas invariants in CY3 categories is controlled by a beautiful formula involving the group of automorphisms of a symplectic algebraic torus. This formula invites one to solve a certain Riemann-Hilbert problem. I will start by explaining how to solve this problem in the simplest possible case (this is undergraduate stuff!). I will then talk about a more general class of examples of the wall-crossing formula involving moduli spaces of quadratic differentials.

Tue, 19 Jan 2016

15:45 - 16:45
L4

Symplectic categories in Derived Geometry

Lino Amorim
(Oxford)
Abstract

I will describe a construction of the Weinstein symplectic category of Lagrangian correspondences in the context of shifted symplectic geometry. I will then explain how one can linearize this category starting from a "quantization" of  (-1)-shifted symplectic derived stacks: we assign a perverse sheaf to each (-1)-shifted symplectic derived stack (already done by Joyce and his collaborators) and a map of perverse sheaves to each (-1)-shifted Lagrangian correspondence (still conjectural).

Tue, 23 Feb 2016

15:45 - 16:45
L4

Log stable maps and Morse theory of toric varieties

William (Danny) Gillam
(Bogazici University Turkey)
Abstract

We will discuss a result to the effect that the moduli space of log stable maps to a toric variety X is "the same" as the Morse-theoretic moduli space of broken gradient flow lines in the "differentiable realization" Y of the fan for X.  This is joint work with Sam Molcho.

Tue, 16 Feb 2016

15:45 - 16:45
L4

The K3 category of a cubic fourfold

Daniel Huybrechts
(Bonn)
Abstract

Smooth cubic fourfolds are linked to K3 surfaces via their Hodge structures, due to work of Hassett, and via Kuznetsov's K3 category A. The relation between these two viewpoints has recently been elucidated by Addington and Thomas. 
We study both of these aspects further and extend them to twisted K3 surfaces, which in particular allows us to determine the group of autoequivalences of A for the general cubic fourfold. Furthermore, we prove finiteness results for cubics with equivalent K3 categories and study periods of cubics in terms of generalized K3 surfaces.

Thu, 26 Nov 2015

14:45 - 15:45
L4

The moduli stack of tropical curves (COW SEMINAR)

Martin Ulirsch
(University of Bonn)
Abstract

The moduli space of tropical curves (and its variants) is one of the most-studied objects in tropical geometry. So far this moduli space has only been considered as an essentially set-theoretic coarse moduli space (sometimes with additional structure). As a consequence of this restriction, the tropical forgetful map does not define a universal curve
(at least in the positive genus case). The classical work of Knudsen has resolved a similar issue for the algebraic moduli space of curves by considering the fine moduli stacks instead of the coarse moduli spaces. In this talk I am going to give an introduction to these fascinating tropical moduli spaces and report on ongoing work with R. Cavalieri, M. Chan, and J. Wise, where we propose the notion of a moduli stack of tropical curves as a geometric stack over the category of rational polyhedral cones. Using this framework one can give a natural interpretation of the forgetful morphism as a universal curve. The coarse moduli space arises as the set of $\mathbb{R}_{\geq 0}$-valued points of the moduli stack. Given time, I will also explain how the process of tropicalization for these moduli stacks can be phrased in a more fundamental way using the language of logarithmic algebraic stacks.
 

Thu, 26 Nov 2015

13:30 - 14:30
L4

Recent advances in symplectic duality (COW SEMINAR)

Alexander Braverman
(Brown University)
Abstract

It has been observed long time ago (by many people) that singular affine symplectic varieties come in pairs; that is often to an affine singular symplectic variety $X$ one can associate a dual variety $X^!$; the geometries of $X$ and $X^!$ (and their quantizations) are related in a non-trivial way. The purpose of the talk will be 3-fold:

1) Explain a set of conjectures of Braden, Licata, Proudfoot and Webster which provide an exact formulation of the relationship between $X$ and $X^!$

2) Present a list of examples of symplectically dual pairs (some of them are very recent); in particular, we shall explain how the symplectic duals to Nakajima quiver varieties look like.

3) Give a new approach to the construction of $X^!$ and a proof of the conjectures from part 1).

The talk is based on a work in progress with Finkelberg and Nakajima.

Tue, 24 Nov 2015

15:45 - 16:45
L4

The Tamagawa number formula for affine Kac-Moody groups

Alexander Braverman
(Brown University)
Abstract

Let F be a global field and let A denote its adele ring. The usual Tamagawa number formula computes the (suitably normalized) volume of the quotient G(A)/G(F) in terms of values of the zeta-function of F at the exponents of G; here G is simply connected semi-simple group. When F is functional field, this computation is closely related to the Atiyah-Bott computation of the cohomology of the moduli space of G-bundles on a smooth projective curve.

I am going to present a (somewhat indirect) generalization of the Tamagawa formula to the case when G is an affine Kac-Moody group and F is a functional fiend. Surprisingly, the proof heavily uses the so called Macdonald constant term identity. We are going to discuss possible (conjectural) geometric interpretations of this formula (related to moduli spaces of bundles on surfaces).

This is joint work with D.Kazhdan.

Tue, 03 Nov 2015

14:15 - 15:15
L4

Open invariants and crepant transformations

Renzo Cavalieri
(Colorado State)
Abstract

The question that the Crepant Resolution Conjecture (CRC) wants to address is: given an orbifold X that admits a repant resolution Y, can we systematically compare the Gromov-Witten theories of the two spaces? That this should happen was first observed by physicists and the question was imported into mathematics by Y.Ruan, who posited it as the search for an isomorphism in the quantum cohomologies of the two spaces. In the last fifteen years this question has evolved and found different formulations which various degree of generality and validity. Perhaps the most powerful approach to the CRC is through Givental's formalism. In this case, Coates, Corti, Iritani and Tseng propose that the CRC should consist of the natural comparison of geometric objects constructed from the GW potential fo the space. We explore this approach in the setting of open GW invariants. We formulate an open version of the CRC using this formalism, and make some verifications. Our approach is well tuned with Iritani's approach to the CRC via integral structures, and it seems to suggest that open invariants should play a prominent role in mirror symmetry. 

Subscribe to Algebraic and Symplectic Geometry Seminar