Thu, 15 Nov 2012

14:00 - 15:00
Gibson Grd floor SR

Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and Non-Standard Reduced Integration

Professor Mark Ainsworth
(Brown University)
Abstract

We study the dispersion and dissipation of the numerical scheme obtained by taking a weighted averaging of the consistent (finite element) mass matrix and lumped (spectral element) mass matrix for the small wave number limit. We find and prove that for the optimum blending the resulting scheme

(a) provides $2p+4$ order accuracy for $p$th order method (two orders more accurate compared with finite and spectral element schemes);

(b) has an absolute accuracy which is $\mathcal{O}(p^{-3})$ and $\mathcal{O}(p^{-2})$ times better than that of the pure finite and spectral element schemes, respectively;

(c) tends to exhibit phase lag.

Moreover, we show that the optimally blended scheme can be efficiently implemented merely by replacing the usual Gaussian quadrature rule used to assemble the mass and stiffness matrices by novel nonstandard quadrature rules which are also derived.

Thu, 08 Nov 2012

14:00 - 15:00
Gibson Grd floor SR

On the design and error control of higher order in time ALE formulations

Dr Irene Kyza
(IACM-FORTH)
Abstract

ALE formulations are useful when approximating solutions of problems in deformable domains, such as fluid-structure interactions. For realistic simulations involving fluids in 3d, it is important that the ALE method is at least of second order of accuracy. Second order ALE methods in time, without any constraint on the time step, do not exist in the literature and the role of the so-called geometric conservation law (GCL) for stability and accuracy is not clear. We propose discontinuous Galerkin (dG) methods of any order in time for a time dependent advection-diffusion model problem in moving domains. We prove that our proposed schemes are unconditionally stable and that the conservative and non conservative formulations are equivalent. The same results remain true when appropriate quadrature is used for the approximation of the involved integrals in time. The analysis hinges on the validity of a discrete Reynolds' identity and generalises the GCL to higher order methods. We also prove that the computationally less intensive Runge-Kutta-Radau (RKR) methods of any order are stable, subject to a mild ALE constraint. A priori and a posteriori error analysis is provided. The final estimates are of optimal order of accuracy. Numerical experiments confirm and complement our theoretical results.

This is joint work with Andrea Bonito and Ricardo H. Nochetto.

Thu, 01 Nov 2012

14:00 - 15:00
Gibson Grd floor SR

Discontinuous Galerkin Methods for Surface PDEs

Dr Andreas Dedner
(University of Warwick)
Abstract

The Discontinuous Galerkin (DG) method has been used to solve a wide range of partial differential equations. Especially for advection dominated problems it has proven very reliable and accurate. But even for elliptic problems it has advantages over continuous finite element methods, especially when parallelization and local adaptivity are considered.

In this talk we will first present a variation of the compact DG method for elliptic problems with varying coefficients. For this method we can prove stability on general grids providing a computable bound for all free parameters. We developed this method to solve the compressible Navier-Stokes equations and demonstrated its efficiency in the case of meteorological problems using our implementation within the DUNE software framework, comparing it to the operational code COSMO used by the German weather service.

After introducing the notation and analysis for DG methods in Euclidean spaces, we will present a-priori error estimates for the DG method on surfaces. The surface finite-element method with continuous ansatz functions was analysed a few years ago by Dzuik/Elliot; we extend their results to the interior penalty DG method where the non-smooth approximation of the surface introduces some additional challenges.

Thu, 18 Oct 2012

14:00 - 15:00
Gibson Grd floor SR

FEM/BEM coupling for wave propagation

Dr Lehel Banjai
(Heriot-Watt University)
Abstract

We will discuss the numerical simulation of acoustic wave propagation with localized inhomogeneities. To do this we will apply a standard finite element method (FEM) in space and explicit time-stepping in time on a finite spatial domain containing the inhomogeneities. The equations in the exterior computational domain will be dealt with a time-domain boundary integral formulation discretized by the Galerkin boundary element method (BEM) in space and convolution quadrature in time.

\\

\\

We will give the analysis of the proposed method, starting with the proof of a positivity preservation property of convolution quadrature as a consequence of a variant of the Herglotz theorem. Combining this result with standard energy analysis of leap-frog discretization of the interior equations will give us both stability and convergence of the method. Numerical results will also be given.

Thu, 11 Oct 2012

14:00 - 15:00
Gibson Grd floor SR

Automated parallel adjoints for model differentiation, optimisation and stability analysis

Dr Patrick Farrell
(Imperial College London)
Abstract

The derivatives of PDE models are key ingredients in many

important algorithms of computational science. They find applications in

diverse areas such as sensitivity analysis, PDE-constrained

optimisation, continuation and bifurcation analysis, error estimation,

and generalised stability theory.

\\

\\

These derivatives, computed using the so-called tangent linear and

adjoint models, have made an enormous impact in certain scientific fields

(such as aeronautics, meteorology, and oceanography). However, their use

in other areas has been hampered by the great practical

difficulty of the derivation and implementation of tangent linear and

adjoint models. In his recent book, Naumann (2011) describes the problem

of the robust automated derivation of parallel tangent linear and

adjoint models as "one of the great open problems in the field of

high-performance scientific computing''.

\\

\\

In this talk, we present an elegant solution to this problem for the

common case where the original discrete forward model may be written in

variational form, and discuss some of its applications.

Thu, 04 Oct 2012

14:00 - 15:00
Gibson Grd floor SR

The Science of Ice Sheets: the Mathematical Modeling and Computational Simulation of Ice Flows

Professor Max Gunzburger
(Florida State University)
Abstract

The melting of ice in Greenland and Antarctica would, of course, be by far the major contributor any possible sea level rise. Thus, to make science-based predictions about sea-level rise, it is crucial that the ice sheets covering those land masses be accurately mathematically modeled and computationally simulated. In fact, the 2007 IPCC report on the state of the climate did not include predictions about sea level rise because it was concluded there that the science of ice sheets was not developed to a sufficient degree. As a result, predictions could not be rationally and

confidently made. In recent years, there has been much activity in trying to improve the state-of-the-art of ice sheet modeling and simulation. In

this lecture, we review a hierarchy of mathematical models for the flow of ice, pointing out the relative merits and demerits of each, showing how

they are coupled to other climate system components (ocean and atmosphere), and discussing where further modeling work is needed. We then discuss algorithmic approaches for the approximate solution of ice sheet flow models and present and compare results obtained from simulations using the different mathematical models.

Mon, 11 Jun 2012

15:30 - 16:30
Gibson Grd floor SR

Young Measures Generated by Solutions of the Incompressible Euler Equations

Emil Wiedemann
(Leipzig)
Abstract

An intriguing, and largely open, question in mathematical fluid dynamics is whether solutions of the Navier-Stokes equations converge in some sense to a solution of the Euler equations in the zero viscosity limit. In fact this convergence could conceivably fail due to oscillations and concentrations occuring in the sequence.

In the late 1980s, R. DiPerna and A. Majda extended the classical concept of Young measure to obtain a notion of measure-valued solution of the Euler equations, which records precisely these oscillation and concentration effects. In this talk I will present a result recently obtained in joint work with L. Székelyhidi, which states that any such measure-valued solution is generated by a sequence of distributional solutions of the Euler equations.

The result is interesting from two different viewpoints: On the one hand, it emphasizes the huge flexibility of the concept of weak solution for Euler; on the other hand, it provides an example of a characterization theorem for Young measures in the tradition of D. Kinderlehrer and P. Pedregal where the differential constraint on the generating sequence does not satisfy the constant rank condition.

Thu, 14 Jun 2012

14:00 - 15:00
Gibson Grd floor SR

Piecewise constant control approximation to multi-dimensional HJB equations

Dr Christoph Reisinger
(University of Oxford)
Abstract

While a general framework of approximating the solution to Hamilton-Jacobi-Bellman (HJB) equations by difference methods is well established, and efficient numerical algorithms are available for one-dimensional problems, much less is known in the multi-dimensional case. One difficulty is the monotone approximation of cross-derivatives, which guarantees convergence to the viscosity solution. We propose a scheme combining piecewise freezing of the policies in time with a suitable spatial discretisation to establish convergence for a wide class of equations, and give numerical illustrations for a diffusion equation with uncertain parameters. These equations arise, for instance, in the valuation of financial derivatives under model uncertainty.

This is joint work with Peter Forsyth.

Thu, 31 May 2012

14:00 - 15:00
Gibson Grd floor SR

High order adaptive finite element approximations for cardiac electrophysiology

Dr David Kay
(University of Oxford)
Abstract

This talk will present a computationally efficient method of simulating cardiac electrical propagation using an

adaptive high-order finite element method. The refinement strategy automatically concentrates computational

effort where it is most needed in space on each time-step. We drive the adaptivity using a residual-based error

indicator, and demonstrate using norms of the error that the indicator allows to control it successfully. Our

results using two-dimensional domains of varying complexity demonstrate in that significant improvements in

efficiency are possible over the state-of-the-art, indicating that these methods should be investigated for

implementation in whole-heart scale software.

Subscribe to Gibson Grd floor SR