Research group
Geometry
Mon, 30 Nov 2020
14:15
Virtual

Application of a Bogomolov-Gieseker type inequality to counting invariants

Soheyla Feyzbakhsh
(Imperial)
Abstract

In this talk, I will work on a smooth projective threefold X which satisfies the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda, such as the projective space P^3 or the quintic threefold. I will show certain moduli spaces of 2-dimensional torsion sheaves on X are smooth bundles over Hilbert schemes of ideal sheaves of curves and points in X. When X is Calabi-Yau this gives a simple wall crossing formula expressing curve counts (and so ultimately Gromov-Witten invariants) in terms of counts of D4-D2-D0 branes. This is joint work with Richard Thomas. 

Mon, 12 Oct 2020
14:15
Virtual

Segre and Verlinde formulas for moduli of sheaves on surfaces

Lothar Gottsche
(ICTP Trieste)
Abstract

This is a report on joint work with Martijn Kool. 

Recently, Marian-Oprea-Pandharipande established a generalization of Lehn’s conjecture for Segre numbers associated to Hilbert schemes of points on surfaces. Extending work of Johnson, they provided a conjectural correspondence between Segre and Verlinde numbers. For surfaces with holomorphic 2-form, we propose conjectural generalizations of their results to moduli spaces of stable sheaves of higher rank. 

Using Mochizuki’s formula, we derive a universal function which expresses virtual Segre and Verlinde numbers of surfaces with holomorphic 2-form in terms of Seiberg- Witten invariants and intersection numbers on products of Hilbert schemes of points. We use this to  verify our conjectures in examples. 

Mon, 07 Dec 2020

11:00 - 12:00
Virtual

Two perspectives on the stack of principal bundles on an elliptic curve and its slices

Dougal Davis
(Edinburgh)
Abstract

Let G be a reductive group, E an elliptic curve, and Bun_G the moduli stack of principal G-bundles on E. In this talk, I will attempt to explain why Bun_G is a very interesting object from the perspectives of both singularity theory on the one hand, and shifted symplectic geometry and representation theory on the other. In the first part of the talk, I will explain how to construct slices of Bun_G through points corresponding to unstable bundles, and how these are linked to certain singular algebraic surfaces and their deformations in the case of a "subregular" bundle. In the second (probably much shorter) part, I will discuss the shifted symplectic geometry of Bun_G and its slices. If time permits, I will sketch how (conjectural) quantisations of these structures should be related to some well known algebras of an "elliptic" flavour, such as Sklyanin and Feigin-Odesskii algebras, and elliptic quantum groups.

Mon, 02 Nov 2020

14:15 - 15:15
Virtual

Smith theory in filtered Floer homology and Hamiltonian diffeomorphisms

Egor Shelukhin
(Université de Montréal)
Abstract

We describe how Smith theory applies in the setting of Hamiltonian Floer homology filtered by the action functional, and provide applications to questions regarding Hamiltonian diffeomorphisms, including the Hofer-Zehnder conjecture on the existence of infinitely many periodic points and a question of McDuff-Salamon on Hamiltonian diffeomorphisms of finite order.

Mon, 09 Nov 2020

14:15 - 15:15
Virtual

Cohomology of the moduli of Higgs bundles and the Hausel-Thaddeus conjecture

Davesh Maulik
(MIT)
Abstract

In this talk, I will discuss some results on the structure of the cohomology of the moduli space of stable SL_n Higgs bundles on a curve. 

One consequence is a new proof of the Hausel-Thaddeus conjecture proven previously by Groechenig-Wyss-Ziegler via p-adic integration.

We will also discuss connections to the P=W conjecture if time permits. Based on joint work with Junliang Shen.

Mon, 22 Jun 2020
14:15
Virtual

Geometry of genus 4 curves in P^3 and wall-crossing

Fatemeh Rezaee
(Edinburgh)
Abstract

In this talk, I will explain a new wall-crossing phenomenon on P^3 that induces non-Q-factorial singularities and thus cannot be understood as an operation in the MMP of the moduli space, unlike the case for many surfaces.  If time permits, I will explain how the wall-crossing could help to understand the geometry of the associated Hilbert scheme and PT moduli space.

Mon, 01 Jun 2020
14:15
Virtual

Homological mirror symmetry for log Calabi-Yau surfaces

Ailsa Keating
(Cambridge)
Abstract

Given a log Calabi-Yau surface Y with maximal boundary D, I'll explain how to construct a mirror Landau-Ginzburg model, and sketch a proof of homological mirror symmetry for these pairs when (Y,D) is distinguished within its deformation class (this is mirror to an exact manifold). I'll explain how to relate this to the total space of the SYZ fibration predicted by Gross--Hacking--Keel, and, time permitting, explain ties with earlier work of Auroux--Katzarkov--Orlov and Abouzaid. Joint work with Paul Hacking.

Mon, 25 May 2020
14:15
Virtual

Quantum K-theory and 3d A-model

Cyril Closset
(Oxford)
Abstract

I will discuss some ongoing work on three-dimensional supersymmetric gauge theories and their relationship to (equivariant) quantum K-theory. I will emphasise the interplay between the physical and mathematical motivations and approaches, and attempt to build a dictionary between the two.  As an interesting example, I will discuss the quantum K-theory of flag manifolds. The QK ring will be related to the vacuum structure of a gauge theory with Chern-Simons interactions, and the (genus-0) K-theoretic invariants will be computed in terms of explicit residue formulas that can be derived from the relevant supersymmetric path integrals.

Mon, 15 Jun 2020
14:15
Virtual

Geometry from Donaldson-Thomas invariants

Tom Bridgeland
(Sheffield)
Abstract

I will describe an ongoing research project which aims to encode the DT invariants of a CY3 triangulated category in a geometric structure on its space of stability conditions. More specifically we expect to find a complex hyperkahler structure on the total space of the tangent bundle. These ideas are closely related to the work of Gaiotto, Moore and Neitzke from a decade ago. The main analytic input is a class of Riemann-Hilbert problems involving maps from the complex plane to an algebraic torus with prescribed discontinuities along a collection of rays.

Mon, 08 Jun 2020
14:15
Virtual

From calibrated geometry to holomorphic invariants

Tommaso Pacini
(University of Turin)
Abstract

Calibrated geometry, more specifically Calabi-Yau geometry, occupies a modern, rather sophisticated, cross-roads between Riemannian, symplectic and complex geometry. We will show how, stripping this theory down to its fundamental holomorphic backbone and applying ideas from classical complex analysis, one can generate a family of purely holomorphic invariants on any complex manifold. We will then show how to compute them, and describe various situations in which these invariants encode, in an intrinsic fashion, properties not only of the given manifold but also of moduli spaces.

Interest in these topics, if initially lacking, will arise spontaneously during this informal presentation.

Subscribe to Geometry and Analysis Seminar