Research group
Geometry
Mon, 19 Oct 2020

14:15 - 15:15
Virtual

Spin(7) Instantons and HYM Connections for the Stenzel Metric

Hector Papoulias
(Oxford)
Abstract

The Spin(7) and SU(4) structures on a Calabi-Yau 4-fold give rise to certain first order PDEs defining special Yang-Mills connections: the Spin(7) instanton equations and the Hermitian Yang-Mills (HYM) equations respectively. The latter are stronger than the former. In 1998 C. Lewis proved that -over a compact base space- the existence of an HYM connection implies the converse. In this talk we demonstrate that the equivalence of the two gauge-theoretic problems fails to hold in generality. We do this by studying the invariant solutions on a highly symmetric noncompact Calabi-Yau 4-fold: the Stenzel manifold. We give a complete description of the moduli space of irreducible invariant Spin(7) instantons with structure group SO(3) on this space and find that the HYM connections are properly embedded in it. This moduli space reveals an explicit example of a sequence of Spin(7) instantons bubbling off near a Cayley submanifold. The missing limit is an HYM connection, revealing a potential relationship between the two equation systems.

Mon, 16 Nov 2020
14:15
Virtual

Optimal transport, Ricci curvature lower bounds and group actions

Andrea Mondino
(Oxford)
Abstract

In the talk I will survey the fast growing field of metric measure spaces satisfying a lower bound on Ricci Curvature, in a synthetic sense via optimal transport. Particular emphasis will be given to discuss how such (possibly non-smooth) spaces naturally (and usefully) extend the class of smooth Riemannian manifolds with Ricci curvature bounded below.

Mon, 26 Oct 2020

14:15 - 15:15
Virtual

Coproducts in the cohomological DT theory of 3-Calabi-Yau completions

Ben Davison
(Edinburgh)
Abstract
Given a suitably friendly category D we can take the 3-Calabi Yau completion of D and obtain a 3-Calabi-Yau category E. The archetypal example has D as the category of coherent sheaves on a smooth quasiprojective surface, then E is the category of coherent sheaves on the total space of the canonical bundle - a quasiprojective 3CY variety. The moduli stack of semistable objects in the 3CY completion E supports a vanishing cycle-type sheaf, the hypercohomology of which is the basic object in the study of the DT theory of E. Something extra happens when our input category is itself 2CY: examples include the category of local systems on a Riemann surface, the category of coherent sheaves on a K3/Abelian surface, the category of Higgs bundles on a smooth complete curve, or the category of representations of a preprojective algebra. In these cases, the DT cohomology of E carries a cocommutative coproduct. I'll also explain how this interacts with older algebraic structures in cohomological DT theory to provide a geometric construction of both well-known and new quantum groups.
Mon, 23 Nov 2020
14:15
Virtual

Complex Links and Algebraic Multiplicities

Vidit Nanda
(Oxford)
Abstract

Given a nested pair X and Y of complex projective varieties, there is a single positive integer e which measures the singularity type of X inside Y. This is called the Hilbert-Samuel multiplicity of Y along X, and it appears in the formulations of several standard intersection-theoretic constructions including Segre classes, Euler obstructions, and various other multiplicities. The standard method for computing e requires knowledge of the equations which define X and Y, followed by a (super-exponential) Grobner basis computation. In this talk we will connect the HS multiplicity to complex links, which are fundamental invariants of (complex analytic) Whitney stratified spaces. Thanks to this connection, the enormous computational burden of extracting e from polynomial equations reduces to a simple exercise in clustering point clouds. In fact, one doesn't even need the polynomials which define X and Y: it suffices to work with dense point samples. This is joint work with Martin Helmer.

Mon, 30 Nov 2020
14:15
Virtual

Application of a Bogomolov-Gieseker type inequality to counting invariants

Soheyla Feyzbakhsh
(Imperial)
Abstract

In this talk, I will work on a smooth projective threefold X which satisfies the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda, such as the projective space P^3 or the quintic threefold. I will show certain moduli spaces of 2-dimensional torsion sheaves on X are smooth bundles over Hilbert schemes of ideal sheaves of curves and points in X. When X is Calabi-Yau this gives a simple wall crossing formula expressing curve counts (and so ultimately Gromov-Witten invariants) in terms of counts of D4-D2-D0 branes. This is joint work with Richard Thomas. 

Mon, 12 Oct 2020
14:15
Virtual

Segre and Verlinde formulas for moduli of sheaves on surfaces

Lothar Gottsche
(ICTP Trieste)
Abstract

This is a report on joint work with Martijn Kool. 

Recently, Marian-Oprea-Pandharipande established a generalization of Lehn’s conjecture for Segre numbers associated to Hilbert schemes of points on surfaces. Extending work of Johnson, they provided a conjectural correspondence between Segre and Verlinde numbers. For surfaces with holomorphic 2-form, we propose conjectural generalizations of their results to moduli spaces of stable sheaves of higher rank. 

Using Mochizuki’s formula, we derive a universal function which expresses virtual Segre and Verlinde numbers of surfaces with holomorphic 2-form in terms of Seiberg- Witten invariants and intersection numbers on products of Hilbert schemes of points. We use this to  verify our conjectures in examples. 

Mon, 07 Dec 2020

11:00 - 12:00
Virtual

Two perspectives on the stack of principal bundles on an elliptic curve and its slices

Dougal Davis
(Edinburgh)
Abstract

Let G be a reductive group, E an elliptic curve, and Bun_G the moduli stack of principal G-bundles on E. In this talk, I will attempt to explain why Bun_G is a very interesting object from the perspectives of both singularity theory on the one hand, and shifted symplectic geometry and representation theory on the other. In the first part of the talk, I will explain how to construct slices of Bun_G through points corresponding to unstable bundles, and how these are linked to certain singular algebraic surfaces and their deformations in the case of a "subregular" bundle. In the second (probably much shorter) part, I will discuss the shifted symplectic geometry of Bun_G and its slices. If time permits, I will sketch how (conjectural) quantisations of these structures should be related to some well known algebras of an "elliptic" flavour, such as Sklyanin and Feigin-Odesskii algebras, and elliptic quantum groups.

Mon, 02 Nov 2020

14:15 - 15:15
Virtual

Smith theory in filtered Floer homology and Hamiltonian diffeomorphisms

Egor Shelukhin
(Université de Montréal)
Abstract

We describe how Smith theory applies in the setting of Hamiltonian Floer homology filtered by the action functional, and provide applications to questions regarding Hamiltonian diffeomorphisms, including the Hofer-Zehnder conjecture on the existence of infinitely many periodic points and a question of McDuff-Salamon on Hamiltonian diffeomorphisms of finite order.

Mon, 09 Nov 2020

14:15 - 15:15
Virtual

Cohomology of the moduli of Higgs bundles and the Hausel-Thaddeus conjecture

Davesh Maulik
(MIT)
Abstract

In this talk, I will discuss some results on the structure of the cohomology of the moduli space of stable SL_n Higgs bundles on a curve. 

One consequence is a new proof of the Hausel-Thaddeus conjecture proven previously by Groechenig-Wyss-Ziegler via p-adic integration.

We will also discuss connections to the P=W conjecture if time permits. Based on joint work with Junliang Shen.

Mon, 22 Jun 2020
14:15
Virtual

Geometry of genus 4 curves in P^3 and wall-crossing

Fatemeh Rezaee
(Edinburgh)
Abstract

In this talk, I will explain a new wall-crossing phenomenon on P^3 that induces non-Q-factorial singularities and thus cannot be understood as an operation in the MMP of the moduli space, unlike the case for many surfaces.  If time permits, I will explain how the wall-crossing could help to understand the geometry of the associated Hilbert scheme and PT moduli space.

Subscribe to Geometry and Analysis Seminar