Research group
Geometry
Mon, 27 Jan 2020

14:15 - 15:15
L4

Symplectic embeddings and infinite staircases. 

Tara Holm
(Cornell and Cambridge)
Abstract

McDuff and Schlenk determined when a four-dimensional symplectic ellipsoid can be symplectically embedded into a four-dimensional ball. They found that if the ellipsoid is close to round, the answer is given by an ``infinite staircase" determined by the odd index Fibonacci numbers, while if the ellipsoid is sufficiently stretched, all obstructions vanish except for the volume obstruction. Infinite staircases have also been found when embedding ellipsoids into polydisks (Frenkel - Muller, Usher) and into the ellipsoid E(2, 3) (Cristofaro-Gardiner - Kleinman). In this talk, we will see how the sharpness of ECH capacities for embedding of ellipsoids implies the existence of infinite staircases for these and three other target spaces.  We will then discuss the relationship with toric varieties, lattice point counting, and the Philadelphia subway system. This is joint work with Dan Cristofaro-Gardiner, Alessia Mandini,
and Ana Rita Pires.

 

Mon, 02 Dec 2019

14:15 - 15:15
L4

Cohomology of non-reductive GIT quotients and hyperbolicity

Frances Kirwan
(Oxford)
Abstract

The aim of this talk is to describe joint work with Gergely Berczi using a recent extension to non-reductive actions of geometric invariant theory, and its links with moment maps in symplectic geometry, to study hyperbolicity of generic hypersurfaces in a projective space. Using intersection theory for non-reductive GIT quotients applied to  compactifications of bundles of invariant jet differentials over complex manifolds leads to a proof of the Green-Griffiths-Lang conjecture for a generic projective hypersurface of dimension n whose degree is greater than n^6. A recent result of Riedl and Yang then implies the Kobayashi conjecture for generic hypersurfaces of degree greater than (2n-1)^6.

Mon, 04 Nov 2019

14:15 - 15:15
L4

Infinite geodesics on convex surfaces

Alexander Lytchak
(Cologne)
Abstract

In the talk I will discuss the  following result and related analytic and geometric questions:   On the boundary of any convex body in the Euclidean space there exists at least one infinite geodesic.

Mon, 11 Nov 2019

14:15 - 15:15
L4

Green's function estimates and the Poisson equation

Ovidiu Munteanu
(University of Connecticut)
Further Information

 

 

Abstract

The Green's function of the Laplace operator has been widely studied in geometric analysis. Manifolds admitting a positive Green's function are called nonparabolic. By Li and Yau, sharp pointwise decay estimates are known for the Green's function on nonparabolic manifolds that have nonnegative Ricci
curvature. The situation is more delicate when curvature is not nonnegative everywhere. While pointwise decay estimates are generally not possible in this
case, we have obtained sharp integral decay estimates for the Green's function on manifolds admitting a Poincare inequality and an appropriate (negative) lower bound on Ricci curvature. This has applications to solving the Poisson equation, and to the study of the structure at infinity of such manifolds.

Mon, 25 Nov 2019
14:15
L4

D modules and rationality questions

Ludmil Katzarkov
(University of Vienna)
Abstract

In this talk we will discuss a new approach to non rationality of projective varieties based on HMS. Examples will be discussed.

Mon, 18 Nov 2019
14:15
L4

Quantization through Morita equivalence

Francis Bischoff
(Oxford)
Abstract

In this talk I will discuss a new proposal for constructing quantizations of holomorphic Poisson structures, and generalized complex manifolds more generally, which is based on using the A model of an associated symplectic manifold known as a Morita equivalence. This construction will be illustrated through the example of toric Poisson structures.

 

Mon, 21 Oct 2019

14:15 - 15:15
L4

The pure cohomology of multiplicative quiver varieties

Kevin McGerty
(Oxford)
Further Information

Multiplicative quiver varieties are a variant of Nakajima's "additive" quiver varieties which were introduced by Crawley-Boevey and Shaw.
They arise naturally in the study of various moduli spaces, in particular in Boalch's work on irregular connections. In this talk we will discuss joint work with Tom Nevins which shows that the tautological classes for these varieties generate the largest possible subalgebra of the cohomology ring, namely the pure part.

 

Mon, 28 Oct 2019
14:15
L4

The Hitchin connection in (almost) arbitrary characteristic.

Johan Martens
(Edinburgh)
Further Information

The Hitchin connection is a flat projective connection on bundles of non-abelian theta-functions over the moduli space of curves, originally introduced by Hitchin in a Kahler context.  We will describe a purely algebra-geometric construction of this connection that also works in (most)positive characteristics.  A key ingredient is an alternative to the Narasimhan-Atiyah-Bott Kahler form on the moduli space of bundles on a curve.  We will comment on the connection with some related topics, such as the Grothendieck-Katz p-curvature conjecture.  This is joint work with Baier, Bolognesi and Pauly.

 

Mon, 14 Oct 2019

14:15 - 15:15
L4

Local stability of Einstein metrics under the Ricci iteration

Tim Buttsworth
(Cornell)
Further Information

A Ricci iteration is a sequence of Riemannian metrics on a manifold such that every metric in the sequence is equal to the Ricci curvature of the next metric. These sequences of metrics were introduced by Rubinstein to provide a discretisation of the Ricci flow. In this talk, I will discuss the relationship between the Ricci iteration and the Ricci flow. I will also describe a recent result concerning the existence and convergence of Ricci iterations close to certain Einstein metrics. (Joint work with Max Hallgren)

Mon, 24 Jun 2019

14:15 - 15:15
L4

Higher Segal spaces and lax A-infinity structure

Elena Gal
(Oxford)
Abstract

The notion of a higher Segal object was introduces by Dyckerhoff and Kapranov as a general framework for studying (higher) associativity inherent
in a wide range of mathematical objects. Most of the examples are related to Hall algebra type constructions, which include quantum groups. We describe a construction that assigns to a simplicial object S a datum H(S)  which is naturally interpreted as a "d-lax A-infinity algebra” precisely when S is a (d+1)-Segal object. This extends the extensively studied d=2 case.

Subscribe to Geometry and Analysis Seminar