Research group
Geometry
Mon, 13 May 2019

14:15 - 15:15
L4

Segre-Driven Ideal Membership Testing

Martin Helmer
(Copenhagen)
Abstract

In this talk we discuss new effective methods to test pairwise containment of arbitrary (possibly singular) subvarieties of any smooth projective toric variety and to determine algebraic multiplicity without working in local rings. These methods may be implemented without using Gröbner bases; in particular any algorithm to compute the number of solutions of a zero-dimensional polynomial system may be used. The methods arise from techniques developed to compute the Segre class s(X,Y) of X in Y for X and Y arbitrary subschemes of some smooth projective toric variety T. In particular, this work also gives an explicit method to compute these Segre classes and other associated objects such as the Fulton-MacPherson intersection product of projective varieties.
These algorithms are implemented in Macaulay2 and have been found to be effective on a variety of examples. This is joint work with Corey Harris (University of Oslo).

 

Mon, 29 Apr 2019

14:15 - 15:15
L4

Einstein 4-manifolds, negative curvature and smoothing cones

Joel Fine
(Universite Libre de Bruxelles)
Abstract

I will describe joint work with Bruno Premoselli which gives a new existence theorem for negatively curved Einstein 4-manifolds, which are obtained by smoothing the singularities of hyperbolic cone metrics. Let (M_k) be a sequence of compact 4-manifolds and let g_k be a hyperbolic cone metric on M_k with cone angle \alpha (independent of k) along a smooth surface S_k. We make the following assumptions:

1. The injectivity radius i(k) of M_k tends to infinity (where in defining injectivity radius we ignore those geodesics which hit the cone singularity)

2. The normal injectivity radius of S_k is at least i(k)/2.

3. The area of the singular locii satisfy A(S_k)\leq C \exp(5 i(k)/2) for some C independent of k.

When these assumptions hold, we prove that for all large k, M_k carries a smooth Einstein metric of negative curvature. The proof involves a gluing theorem and a parameter dependent implicit function theorem (where k is the parameter). As I will explain, negative curvature plays an essential role in the proof. (For those who may be aware of our arxiv preprint, https://arxiv.org/abs/1802.00608 [arxiv.org], the work
I will describe has a new feature, namely we now treat all cone angles, and not just those which are greater than 2\pi. This gives lots more examples of Einstein 4-manifolds.)

 

 

Mon, 17 Jun 2019

14:15 - 15:15
L4

Bryant-Salamon metrics and coassociative fibrations

Jason Lotay
(Oxford)
Abstract

The first examples of complete holonomy G2 metrics were constructed by Bryant-Salamon and are thus of central importance in geometry, but also in physics, appearing for example in the work of Atiyah-Witten, Acharya-Witten and Acharya-Gukov.   I will describe joint work in progress with Spiro Karigiannis which realises Bryant-Salamon manifolds in dimension 7 as coassociative fibrations.  In particular, I will discuss the relationship of this study to gravitational instantons, conical singularities, and to recent work of Donaldson and Joyce-Karigiannis.

 

Mon, 20 May 2019

14:15 - 15:15
L4

Stratifications and coarse moduli spaces for the stack of Higgs bundles

Eloise Hamilton
(Oxford)
Abstract

The stack of Higgs bundles of a given rank and degree over a non-singular projective curve can be stratified in two ways: according to its Higgs Harder-Narasimhan type (its instability type) and according to the Harder-Narasimhan type of the underlying vector bundle (instability type of the underlying bundle). The semistable stratum is an open stratum of the former and admits a coarse moduli space, namely the moduli space of semistable Higgs bundles. It can be constructed using Geometric Invariant Theory (GIT) and is a widely studied moduli space due to its rich geometric structure.

In this talk I will explain how recent advances in Non-Reductive GIT can be used to refine the Higgs Harder-Narasimhan and Harder-Narasimhan stratifications in such a way that each refined stratum admits a coarse moduli space. I will explicitly describe these refined stratifications and their intersection in the case of rank 2 Higgs bundles, and discuss the topology and geometry of the corresponding moduli spaces

Mon, 10 Jun 2019

14:15 - 15:15
L4

Moduli of polarised varieties via canonical Kähler metrics

Ruadhai Dervan
(Cambridge)
Abstract

Moduli spaces of polarised varieties (varieties together with an ample line bundle) are not Hausdorff in general. A basic goal of algebraic geometry is to construct a Hausdorff moduli space of some nice class of polarised varieties. I will discuss how one can achieve this goal using the theory of canonical Kähler metrics. In addition I will discuss some fundamental properties of this moduli space, for example the existence of a Weil-Petersson type Kähler metric. This is joint work with Philipp Naumann.

Mon, 14 Jan 2019

14:15 - 15:15
L4

Instability of some (positive) Einstein metrics under the Ricci flow

Stuart Hall
(Newcastle University)
Abstract

Einstein metrics are fixed points (up to scaling) of Hamilton's Ricci flow. A natural question to ask is whether a given metric is stable in the sense that the flow returns to the Einstein metric under a small perturbation. I'll give a brief survey of this area focussing on the case when the Einstein constant is positive. An interesting class of metrics where this question is not completely resolved are the compact symmetric spaces. I'll report on some recent progress with Tommy Murphy and James Waldron where we have been able to use a criterion due to Kroencke to show the Kaehler-Einstein metric on some Grassmannians and the bi-invariant metric on the Lie group G_2 are unstable.

 

Mon, 18 Feb 2019

14:15 - 15:15
L4

Ricci Flow in Milnor Frames

Syafiq Johar
(Oxford)
Abstract

In this talk, we are going to talk about the Type I singularity on 4-dimensional manifolds foliated by homogeneous S3 evolving under the Ricci
flow. We review the study on rotationally symmetric manifolds done by Angenent and Isenberg as well as by Isenberg, Knopf and Sesum. In the latter, a global frame for the tangent bundle, called the Milnor frame, was used to set up the problem. We shall look at the symmetries of the manifold, derived from Lie groups and its ansatz metrics, and this global tangent bundle frame developed by Milnor and Bianchi. Numerical simulations of the Ricci flow on these manifolds are done, following the work by Garfinkle and Isenberg, providing insight and conjectures for the main problem. Some analytic results will be proven for the manifolds S1×S3 and S4 using maximum principles from parabolic PDE theory and some sufficiency conditions for a neckpinch singularity will be provided. Finally, a problem from general relativity with similar metric symmetries but endowed on a manifold with differenttopology, the Taub-Bolt and Taub-NUT metrics, will be discussed.

 

 

Mon, 03 Jun 2019
14:15
L4

Lie algebras in finite and mixed characteristic.

Lukas Brantner
(Oxford University)
Abstract

Partition Lie algebras are generalisations of rational differential graded Lie algebras which, by a recent result of Mathew and myself, govern the formal deformation theory of algebro-geometric objects in finite and mixed characteristic. In this talk, we will take a closer look at these new gadgets and discuss some of their applications in algebra and topology

Mon, 25 Feb 2019
14:15
L4

Tropically constructed Lagrangians in mirror quintic threefolds

Cheuk Yu Mak
(Cambridge University)
Abstract

In this talk, we will explain how to construct embedded closed Lagrangian submanifolds in mirror quintic threefolds using tropical curves and the toric degeneration technique. As an example, we will illustrate the construction for tropical curves that contribute to the Gromov–Witten invariant of the line class of the quintic threefold. The construction will in turn provide many homologous and non-Hamiltonian isotopic Lagrangian
rational homology spheres, and a geometric interpretation of the multiplicity of a tropical curve as the weight of a Lagrangian. This is a joint work with Helge Ruddat.

 

Mon, 04 Feb 2019
14:15
L4

Gluing methods for Vortex dynamics in Euler flows

Manuel del Pino
(Bath University)
Abstract

We consider the two-dimensional Euler flow for an incompressible fluid confined to a smooth domain. We construct smooth solutions with concentrated vorticities around $k$ points which evolve according to the Hamiltonian system for the Kirkhoff-Routh energy,  using an outer-inner solution gluing approach. The asymptotically singular profile  around each point resembles a scaled finite mass solution of Liouville's equation.
We also discuss the {\em vortex filament conjecture} for the three-dimensional case. This is joint work with Juan D\'avila, Monica Musso and Juncheng Wei.

 

Subscribe to Geometry and Analysis Seminar