Research group
Geometry
Mon, 23 Feb 2015
14:15
L5

Folded hyperkähler manifolds

Nigel Hitchin
(Oxford)
Abstract

The lecture will introduce the notion of a folded 4-dimensional hyperkähler manifold, give examples and prove a local existence theorem from boundary data using twistor methods, following an idea of Biquard.  

Mon, 02 Feb 2015
14:15
L5

Geometric structures, Gromov norm and Kodaira dimensions

Weiyi Zhang
(Warwick)
Abstract

Kodaira dimension provides a very successful classification scheme for complex manifolds. The notion was extended to symplectic 4-manifolds. In this talk, we will define the Kodaira dimension for 3-manifolds through Thurston’s eight geometries. This is compatible with other Kodaira dimensions in the sense of “additivity”. This idea could be extended to dimension 4. Finally, we will see how it is sitting in a potential classification of 4-manifolds by exploring its relations with various Kodaira dimensions and other invariants like Gromov norm.

Mon, 26 Jan 2015
14:15
L5

Ends of the moduli space of Higgs bundles

Frederik Witt
(Münster)
Abstract

Hitchin's existence theorem asserts that a stable Higgs bundle of rank two carries a unitary connection satisfying Hitchin's self-duality equation. In this talk we discuss a new proof, via gluing methods, for
elements in the ends of the Higgs bundle moduli space and identify a dense open subset of the boundary of the compactification of this moduli space.
 

Mon, 01 Dec 2014
14:15
L5

An Abundance of K3 Fibrations and the Structure of the Landscape

Philip Candelas
(Oxford)
Abstract

Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic K3 fibrations whose mirror images are also elliptic K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut into two parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.

Mon, 10 Nov 2014
14:15
L5

Tropical moment maps for toric log symplectic manifolds

Marco Gualtieri
(Toronto)
Abstract

I will describe a generalization of toric symplectic geometry to a new class of Poisson manifolds which are
symplectic away from a collection of hypersurfaces forming a normal crossing configuration.  Using a "tropical
moment map",  I will describe the classification of such manifolds in terms of decorated log affine polytopes,
in analogy with the Delzant classification of toric symplectic manifolds. 

Mon, 17 Nov 2014
14:15
L5

The Horn inequalities and tropical analysis

Andras Szenes
(Geneva)
Abstract

 I will report on recent work on a tropical/symplectic approach to the Horn inequalities. These describe the possible spectra of Hermitian matrices which may be obtained as the sum of two Hermitian matrices with fixed spectra. This is joint work with Anton Alekseev and Maria Podkopaeva.

Subscribe to Geometry and Analysis Seminar