14:15
14:15
14:15
K-contact & Sasakian manifolds of dimension 5
Abstract
Sasakian manifolds are odd-dimensional counterparts of Kahler manifolds in even dimensions,
with K-contact manifolds corresponding to symplectic manifolds. It is an interesting problem to find
obstructions for a closed manifold to admit such types of structures and in particular, to construct
K-contact manifolds which do not admit Sasakian structures. In the simply-connected case, the
hardest dimension is 5, where Kollar has found subtle obstructions to the existence of Sasakian
structures, associated to the theory of algebraic surfaces.
In this talk, we develop methods to distinguish K-contact manifolds from Sasakian ones in
dimension 5. In particular, we find the first example of a closed 5-manifold with first Betti number 0 which is K-contact but which carries no semi-regular Sasakian structure.
(Joint work with J.A. Rojo and A. Tralle).
14:15
Generalized Kähler structures from a holomorphic Poisson viewpoint
Abstract
After reviewing the main results relating holomorphic Poisson geometry to generalized Kahler structures, I will explain some recent progress in deforming generalized Kahler structures. I will also describe a new way to view generalized kahler geometry purely in terms of Poisson structures.
14:15
The topology of area-minimizing surfaces in manifolds of non-negative curvature
Abstract
Work of Schoen--Yau in the 70's/80's shows that area-minimizing (actually stable) two-sided surfaces in three-manifolds of non-negative scalar curvature are of a special topological type: a sphere, torus, plane or cylinder. The torus and cylinder cases are "borderline" for this estimate. It was shown by Cai--Galloway in the late 80's that the torus can only occur in a very special ambient three manifold. We complete the story by showing that a similar result holds for the cylinder. The talk should be accessible to those with a basic knowledge of curvature in Riemannian geometry.
14:15
14:15
The Gromoll filtration, Toda brackets and positive scalar curvature
Abstract
02:15
Torelli theorems and integrable systems for parabolic Higgs bundles
Abstract
In the same way that the classical Torelli theorem determines a curve from its polarized Jacobian we show that moduli spaces of parabolic bundles and parabolic Higgs bundles over a compact Riemann surface X also determine X. We make use of a theorem of Hurtubise on the geometry of algebraic completely integrable systems in the course of the proof. This is a joint work with I. Biswas and T. Gómez
14:15
On the principal Ricci curvatures of a Riemannian 3-manifold
Abstract
Milnor has shown that three-dimensional Lie groups with left invariant Riemannian metrics furnish examples of 3-manifolds with principal Ricci curvatures of fixed signature --- except for the signatures (-,+,+), (0,+,-), and (0,+,+). We examine these three cases on a Riemannian 3-manifold, and prove global obstructions in certain cases. For example, if the manifold is closed, then the signature (-,+,+) is not globally possible if it is of the form -µ,f,f, with µ a positive constant and f a smooth function that never takes the values 0,-µ (this generalizes a result by Yamato '91). Similar obstructions for the other cases will also be discussed. Our methods of proof rely upon frame techniques inspired by the Newman-Penrose formalism. Thus, we will close by turning our attention to four dimensions and Lorentzian geometry, to uncover a relation between null vector fields and exact symplectic forms, with relations to Weinstein structures.