Research group
Geometry
Mon, 02 Dec 2024
14:15
L4

Open Gromov-Witten invariants and Mirror symmetry

Kai Hugtenburg
(Lancaster)
Abstract

This talk reports on two projects. The first work (in progress), joint  with Amanda Hirschi, constructs (genus 0) open Gromov-Witten invariants for any Lagrangian submanifold using a global Kuranishi chart construction. As an application we show open Gromov-Witten invariants are invariant under Lagrangian cobordisms. I will then describe how open Gromov-Witten invariants fit into mirror symmetry, which brings me to the second project: obtaining open Gromov-Witten invariants from the Fukaya category.

Thu, 06 Feb 2025
16:00
L4

Unramified Langlands: geometric and function-theoretic

Dennis Gaitsgory
(MPI Bonn)
Abstract
I will explain the content of Geometric Langlands (which is a theorem over the ground fields of characteristic 0 but still a conjecture in positive characteristic) and show how it implies a description of the space of automorphic functions in terms of Galois data. The talk will mostly follow a joint paper with Arinkin, Kazhdan, Raskin, Rozenblyum and Varshavsky from 2022.
Mon, 18 Nov 2024
14:15
L4

Gromov-Witten theory in degenerations

Dhruv Ranganathan
(Cambridge)
Abstract

I will discuss recent and ongoing work with Davesh Maulik that explains how Gromov-Witten invariants behave under simple normal crossings degenerations. The main outcome of the study is that if a projective manifold $X$ undergoes a simple normal crossings degeneration, the Gromov-Witten theory of $X$ is determined, via universal formulas, by the Gromov-Witten theory of the strata of the degeneration. Although the proof proceeds via logarithmic geometry, the statement involves only traditional Gromov-Witten cycles. Indeed, one consequence is a folklore conjecture of Abramovich-Wise, that logarithmic Gromov-Witten theory “does not contain new invariants”. I will also discuss applications of this to a conjecture of Levine and Pandharipande, concerning the relationship between Gromov-Witten theory and the cohomology of the moduli space of curves.

Mon, 17 Feb 2025
14:15
L5

Curve counting and spaces of Cauchy-Riemann operators

Aleksander Doan
(University College London)
Abstract

It is a long-standing open problem to generalize sheaf-counting invariants of complex projective three-folds to symplectic manifolds of real dimension six. One approach to this problem involves counting  J-holomorphic curves  C, for a generic almost complex structure J, with weights depending on J. Various existing symplectic invariants (Gromov-Witten, Gopakumar-Vafa, Bai-Swaminathan) can be expressed as such weighted counts. In this talk, based on joint work with Thomas Walpuski, I will discuss a new construction of weights associated with curves and a closely related problem about the structure of the space of Cauchy-Riemann operators on  C.

Mon, 28 Oct 2024
14:15
L4

On the Geometric Langlands Program

Dario Beraldo
(University College London)
Abstract

I will discuss how some ideas from Geometric Langlands can be used to obtain new results in birational geometry and on the topology of algebraic varieties.

Mon, 21 Oct 2024
14:15
L4

Machine learning detects terminal singularities

Sara Veneziale
(Imperial College London)
Abstract

In this talk, I will describe recent work in the application of machine learning to explore questions in algebraic geometry, specifically in the context of the study of Q-Fano varieties. These are Q-factorial terminal Fano varieties, and they are the key players in the Minimal Model Program. In this work, we ask and answer if machine learning can determine if a toric Fano variety has terminal singularities. We build a high-accuracy neural network that detects this, which has two consequences. Firstly, it inspires the formulation and proof of a new global, combinatorial criterion to determine if a toric variety of Picard rank two has terminal singularities. Secondly, the machine learning model is used directly to give the first sketch of the landscape of Q-Fano varieties in dimension eight. This is joint work with Tom Coates and Al Kasprzyk.

Mon, 22 Apr 2024
14:15
L4

Refined Harder-Narasimhan filtrations in moduli theory

Andres Ibanez-Nunez
(Oxford)
Abstract

We introduce a notion of refined Harder-Narasimhan filtration, defined abstractly for algebraic stacks satisfying natural conditions. Examples include moduli stacks of objects at the heart of a Bridgeland stability condition, moduli stacks of K-semistable Fano varieties, moduli of principal bundles on a curve, and quotient stacks. We will explain how refined Harder-Narasimhan filtrations are closely related both to stratifications and to the asymptotics of certain analytic flows, relating and expanding work of Kirwan and Haiden-Katzarkov-Kontsevich-Pandit, respectively. In the case of quotient stacks by the action of a torus, the refined Harder-Narasimhan filtration can be computed in terms of convex geometry.

Mon, 13 May 2024
14:15
L4

Quadratic Euler characteristics of singular varieties

Simon Pepin Lehalleur
(KdV Institute, Amsterdam)
Abstract

The quadratic Euler characteristic of an algebraic variety is a (virtual) symmetric bilinear form which refines the topological Euler characteristic and contains interesting arithmetic information when the base field is not algebraically closed. For smooth projective varieties, it has a quite concrete expression in terms of the cup product and Serre duality for Hodge cohomology. However, for singular varieties, it is defined abstractly (using either cut and paste relations or motivic homotopy theory) and is still rather mysterious. I will first introduce this invariant and place it in the broader context of quadratic enumerative geometry. I will then explain some progress on concrete computations, first for symmetric powers (joint with Lenny Taelman) and second for conductor formulas for hypersurface singularities (older results with Marc Levine and Vasudevan Srinivas on the one hand, and joint work in progress with Ran Azouri, Niels Feld, Yonathan Harpaz and Tasos Moulinos on the other).

Subscribe to Geometry and Analysis Seminar