Research group
Geometry
Mon, 13 May 2024
14:15
L4

Quadratic Euler characteristics of singular varieties

Simon Pepin Lehalleur
(KdV Institute, Amsterdam)
Abstract

The quadratic Euler characteristic of an algebraic variety is a (virtual) symmetric bilinear form which refines the topological Euler characteristic and contains interesting arithmetic information when the base field is not algebraically closed. For smooth projective varieties, it has a quite concrete expression in terms of the cup product and Serre duality for Hodge cohomology. However, for singular varieties, it is defined abstractly (using either cut and paste relations or motivic homotopy theory) and is still rather mysterious. I will first introduce this invariant and place it in the broader context of quadratic enumerative geometry. I will then explain some progress on concrete computations, first for symmetric powers (joint with Lenny Taelman) and second for conductor formulas for hypersurface singularities (older results with Marc Levine and Vasudevan Srinivas on the one hand, and joint work in progress with Ran Azouri, Niels Feld, Yonathan Harpaz and Tasos Moulinos on the other).

Mon, 06 May 2024
14:15
L4

Singularities of fully nonlinear geometric flows

Stephen Lynch
((Imperial College)
Abstract
We will discuss the evolution of hypersurfaces by fully nonlinear geometric flows. These are cousins of the mean curvature flow which can be tailored to preserve different features of the underlying hypersurface geometry. Solutions often form singularities. I will present new classification results for blow-ups of singularities which confirm the expectation that these are highly symmetric and hence rigid. I will explain how this work fits into a broader program aimed at characterising Riemannian manifolds with positively curved boundaries.



 

Mon, 27 May 2024
14:15
L4

Weinstein manifolds without arboreal skeleta

Abigail Ward
(Cambridge)
Abstract

The relationship between the topological or homotopy-invariant properties of a symplectic manifold X and the set of possible immersed or embedded Lagrangian submanifolds of X is rich and mostly mysterious.  In 2020, D. Alvarez-Gavela, Y. Eliashberg, and D. Nadler proved that any Weinstein manifold (e.g. an affine variety) admitting a Lagrangian plane field retracts onto a Lagrangian submanifold with arboreal singularities (a certain class of singularities which can be described combinatorially). I will discuss work in progress with D. Alvarez-Gavela and T. Large investigating the other direction, in which we prove a partial converse to the AGEN result and show that most Weinstein manifolds do not admit such skeleta. This suggests that the Floer-theoretic invariants of some well-known open symplectic manifolds may be more complicated than expected.

Mon, 10 Jun 2024
14:15
L4

Verlinde formulas on surfaces

Lothar Gottsche
(ICTP Trieste)
Abstract

Let $S$ be a smooth projective surface with $p_g>0$ and $H^1(S,{\mathbb Z})=0$. 
We consider the moduli spaces $M=M_S^H(r,c_1,c_2)$ of $H$-semistable sheaves on $S$ of rank $r$ and 
with Chern classes $c_1,c_2$. Associated a suitable class $v$ the Grothendieck group of vector bundles
on $S$ there is a deteminant line bundle $\lambda(v)\in Pic(M)$, and also a tautological sheaf $\tau(v)$ on $M$.

In this talk we derive a conjectural generating function for the virtual Verlinde numbers, i.e. the virtual holomorphic 
Euler characteristics of all determinant bundles $\lambda(v)$ on M, and for Segre invariants associated to $\tau(v)$ . 
The argument is based on conjectural blowup formulas and a virtual version of Le Potier's strange duality. 
Time permitting we also sketch a common refinement of these two conjectures, and their proof for Hilbert schemes of points.
 

Mon, 26 Feb 2024
14:15
L4

Hessian geometry of $G_2$-moduli spaces

Thibault Langlais
(Oxford)
Abstract

The moduli space of torsion-free $G_2$-structures on a compact $7$-manifold $M$ is a smooth manifold, locally diffeomorphic to an open subset of $H^3(M)$. It is endowed with a natural metric which arises as the Hessian of a potential, the properties of which are still poorly understood. In this talk, we will review what is known of the geometry of $G_2$-moduli spaces and present new formulae for the fourth derivative of the potential and the curvatures of the associated metric. We explain some interesting consequences for the simplest examples of $G_2$-manifolds, when the universal cover of $M$ is $\mathbb{R}^7$ or $\mathbb{R}^3 \times K3$. If time permits, we also make some comments on the general case.

Mon, 29 Jan 2024
14:15
L4

Floer cohomology for symplectic ${\mathbb C}^*$-manifolds

Alexander Ritter
(Oxford)
Abstract

In this joint work with Filip Zivanovic, we construct symplectic cohomology for a class of symplectic manifolds that admit ${\mathbb C}^*$-actions and which project equivariantly and properly to a convex symplectic manifold. The motivation for studying these is a large class of examples known as Conical Symplectic Resolutions, which includes quiver varieties, resolutions of Slodowy varieties, and hypertoric varieties. These spaces are highly non-exact at infinity, so along the way we develop foundational results to be able to apply Floer theory. Motivated by joint work with Mark McLean on the Cohomological McKay Correspondence, our goal is to describe the ordinary cohomology of the resolution in terms of a Morse-Bott spectral sequence for positive symplectic cohomology. These spectral sequences turn out to be quite computable in many examples. We obtain a filtration on ordinary cohomology by cup-product ideals, and interestingly the filtration can be dependent on the choice of circle action.

Mon, 05 Feb 2024
14:15
L4

Infinite-time Singularities of Lagrangian Mean Curvature Flow

Albert Wood
(Kings College London)
Abstract
Lagrangian mean curvature flow is the name given to the phenomenon that, in a Calabi-Yau manifold, the class of Lagrangian submanifolds is preserved under mean curvature flow. An influential conjecture of Thomas and Yau, refined since by Joyce, proposes to utilise the Lagrangian mean curvature flow to prove that certain Lagrangian submanifolds may be expressed as a connect sum of volume minimising 'special Lagrangians'.
 
This talk is an exposition of recent joint work with Wei-Bo Su and Chung-Jun Tsai, in which we exhibit a Lagrangian mean curvature flow which exists for infinite time and converges to an immersed special Lagrangian. This demonstrates one mechanism by which the above decomposition into special Lagrangians may occur, and is also the first example of an infinite -time singularity of Lagrangian mean curvature flow. The work is a parabolic analogue of work of Dominic Joyce and Yng-Ing Lee on desingularisation of special Lagrangians with conical singularities, and is inspired by the work of Simon Brendle and Nikolaos Kapouleas on ancient solutions of the Ricci flow.
Mon, 19 Feb 2024
14:15
L4

Loop group action on symplectic cohomology

Cheuk Yu Mak
(University of Southhampton)
Abstract

For a compact Lie group $G$, its massless Coulomb branch algebra is the $G$-equivariant Borel-Moore homology of its based loop space. This algebra is the same as the algebra of regular functions on the BFM space. In this talk, we will explain how this algebra acts on the equivariant symplectic cohomology of Hamiltonian $G$-manifolds when the symplectic manifolds are open and convex. This is a generalization of the closed case where symplectic cohomology is replaced with quantum cohomology. Following Teleman, we also explain how it relates to the Coulomb branch algebra of cotangent-type representations. This is joint work with Eduardo González and Dan Pomerleano.

Mon, 04 Mar 2024
14:15
L4

Significance of rank zero Donaldson-Thomas (DT) invariants in curve counting theories

Sohelya Feyzbakhsh
(Imperial College London)
Abstract
Fix a Calabi-Yau 3-fold X of Picard rank one satisfying the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda, such as the quintic 3-fold. I will first describe two methods to achieve explicit formulae relating rank zero Donaldson-Thomas (DT) invariants to Pandharipande-Thomas (PT) invariants using wall-crossing with respect to weak Bridgeland stability conditions on X. As applications, I will find sharp Castelnuovo-type bounds for PT invariants and explain how combining these explicit formulas with S-duality in physics enlarges the known table of Gopakumar-Vafa (GV) invariants. The second part is joint work with string theorists Sergei Alexandrov, Albrecht Klemm, Boris Pioline, and Thorsten Schimannek.
Mon, 22 Jan 2024
14:15
L4

A special class of $k$-harmonic maps inducing calibrated fibrations

Spiro Karigiannis
(University of Waterloo)
Abstract

Let $(M, g)$ be a Riemannian manifold equipped with a calibration $k$-form $\alpha$. In earlier work with Cheng and Madnick (AJM 2021), we studied the analytic properties of a special class of $k$-harmonic maps into $M$ satisfying a first order nonlinear PDE, whose images (away from a critical set) are $\alpha$-calibrated submanifolds of $M$. We call these maps Smith immersions, as they were originally introduced in an unpublished preprint of Aaron Smith. They have nice properties related to conformal geometry, and are higher-dimensional analogues of the $J$-holomorphic map equation. In new joint work (arXiv:2311.14074) with my PhD student Anton Iliashenko, we have obtained analogous results for maps out of $M$. Slightly more precisely, we define a special class of $k$-harmonic maps out of $M$, satisfying a first order nonlinear PDE, whose fibres (away from a critical set) are $\alpha$-calibrated submanifolds of $M$. We call these maps Smith submersions. I will give an introduction to both of these sets of equations, and discuss many future questions.

Subscribe to Geometry and Analysis Seminar