14:15
BPS polynomials and Welschinger invariants
Abstract
The fundamental group of a complex variety is finitely presented. The talk will survey algebraic variants (in fact, distant corollaries) of this fact, in the context of variants of the etale fundamental group. We will then zoom in on "tame" etale fundamental groups of p-adic analytic spaces. Our main result is that it is (topologically) finitely generated (for a quasi-compact and quasi-separated rigid space over an algebraically closed field). The proof uses logarithmic geometry beyond its usual scope of finitely generated monoids to (eventually) reduce the problem to the more classical one of finite generation of tame fundamental groups of algebraic varieties over the residue field. This is joint work with Katharina Hübner, Marcin Lara, and Jakob Stix.
ALF gravitational instantons, of which the Taub-NUT and Atiyah-Hitchin metrics are prototypes, are the complete non-compact hyperkähler 4-manifolds with cubic volume growth. Examples have been known since the 1970's, but a complete classification was only given around 10 years ago. In this talk, I will present joint work with Haskins and Nordström where we extend some of these results to complete non-compact 7-manifolds with holonomy G2 and an asymptotic geometry, called ALC (asymptotically locally conical), that generalises to higher dimension the asymptotic geometry of ALF spaces.
I will describe a generalisation of the Seiberg-Witten equations to a Spin-c manifold of any dimension. The equations are for a U(1) connection A and spinor \phi and also an odd-degree differential form b (of inhomogeneous degree). Clifford action of the form is used to perturb the Dirac operator D_A. The first equation says that (D_A+b)(\phi)=0. The second equation involves the Weitzenböck remainder for D_A+b, setting it equal to q(\phi), where q(\phi) is the same quadratic term which appears in the usual Seiberg-Witten equations. This system is elliptic modulo gauge in dimensions congruent to 0,1 or 3 mod 4. In dimensions congruent to 2 mod 4 one needs to take two copies of the system, coupled via b. I will also describe a variant of these equations which make sense on manifolds with a Spin(7) structure. The most important difference with the familiar 3 and 4 dimensional stories is that compactness of the space of solutions is, for now at least, unclear. This is joint work with Partha Ghosh and, in the Spin(7) setting, Ragini Singhal.
In this talk, we will make an explicit link between self-dual Yang-Mills instantons on the Taub-NUT space, and G2-instantons on the BGGG space, by displaying the latter space as a fibration by the former. In doing so, we will discuss analysis on non-compact manifolds, circle symmetries, and a new method of constructing solutions to quadratically singular ODE systems. This talk is based on joint work with Matt Turner: https://arxiv.org/pdf/2409.03886.
I’ll tell you about some of my favorite algebraic varieties, which are beautiful in their own right, and also have some dramatic applications to algebraic combinatorics. These include the top-heavy conjecture (one of the results for which June Huh was awarded the Fields Medal), as well as non-negativity of Kazhdan—Lusztig polynomials of matroids.
Namikawa has shown that the functor of flat graded Poisson deformations of a conic symplectic singularity is unobstructed and pro-representable. In a subsequent work, Losev showed that the universal Poisson deformation admits, a quantization which enjoys a rather remarkable universal property. In a recent work, we have repackaged the latter theorem as an expression of the representability of a new functor: the functor of quantizations. I will describe how this theorem leads to an easy proof of the existence of a universal equivariant quantizations, and outline a work in progress in which we describe a presentation of a rather complicated quantum Hamiltonian reduction: the finite W-algebra associated to a nilpotent element in a classical Lie algebra. The latter result hinges on new presentations of twisted Yangians.
Given a singularity with a crepant resolution, a symmetry of the derived
category of coherent sheaves on the resolution may often be constructed
using the formalism of spherical functors. I will introduce this, and
new work (arXiv:2409.19555) on general constructions of such symmetries
for hypersurface singularities. This builds on previous results with
Segal, and is inspired by work of Bodzenta-Bondal.
Joint work with Paul Hacking (U Mass Amherst). We first explain how to
prove homological mirror symmetry for a maximal normal crossing
Calabi-Yau surface Y with split mixed Hodge structure. This includes the
case when Y is a type III K3 surface, in which case this is used to
prove a conjecture of Lekili-Ueda. We then explain how to build on this
to prove an HMS statement for K3 surfaces. On the symplectic side, we
have any K3 surface (X, ω) with ω integral Kaehler; on the algebraic
side, we get a K3 surface Y with Picard rank 19. The talk will aim to be
accessible to audience members with a wide range of mirror symmetric
backgrounds.