14:15
14:15
14:15
Open Gromov-Witten invariants and Mirror symmetry
Abstract
This talk reports on two projects. The first work (in progress), joint with Amanda Hirschi, constructs (genus 0) open Gromov-Witten invariants for any Lagrangian submanifold using a global Kuranishi chart construction. As an application we show open Gromov-Witten invariants are invariant under Lagrangian cobordisms. I will then describe how open Gromov-Witten invariants fit into mirror symmetry, which brings me to the second project: obtaining open Gromov-Witten invariants from the Fukaya category.
16:00
Unramified Langlands: geometric and function-theoretic
Abstract
14:15
Gromov-Witten theory in degenerations
Abstract
I will discuss recent and ongoing work with Davesh Maulik that explains how Gromov-Witten invariants behave under simple normal crossings degenerations. The main outcome of the study is that if a projective manifold $X$ undergoes a simple normal crossings degeneration, the Gromov-Witten theory of $X$ is determined, via universal formulas, by the Gromov-Witten theory of the strata of the degeneration. Although the proof proceeds via logarithmic geometry, the statement involves only traditional Gromov-Witten cycles. Indeed, one consequence is a folklore conjecture of Abramovich-Wise, that logarithmic Gromov-Witten theory “does not contain new invariants”. I will also discuss applications of this to a conjecture of Levine and Pandharipande, concerning the relationship between Gromov-Witten theory and the cohomology of the moduli space of curves.
14:15
Curve counting and spaces of Cauchy-Riemann operators
Abstract
It is a long-standing open problem to generalize sheaf-counting invariants of complex projective three-folds to symplectic manifolds of real dimension six. One approach to this problem involves counting J-holomorphic curves C, for a generic almost complex structure J, with weights depending on J. Various existing symplectic invariants (Gromov-Witten, Gopakumar-Vafa, Bai-Swaminathan) can be expressed as such weighted counts. In this talk, based on joint work with Thomas Walpuski, I will discuss a new construction of weights associated with curves and a closely related problem about the structure of the space of Cauchy-Riemann operators on C.
14:15
On the Geometric Langlands Program
Abstract
I will discuss how some ideas from Geometric Langlands can be used to obtain new results in birational geometry and on the topology of algebraic varieties.
14:15
Machine learning detects terminal singularities
Abstract
In this talk, I will describe recent work in the application of machine learning to explore questions in algebraic geometry, specifically in the context of the study of Q-Fano varieties. These are Q-factorial terminal Fano varieties, and they are the key players in the Minimal Model Program. In this work, we ask and answer if machine learning can determine if a toric Fano variety has terminal singularities. We build a high-accuracy neural network that detects this, which has two consequences. Firstly, it inspires the formulation and proof of a new global, combinatorial criterion to determine if a toric variety of Picard rank two has terminal singularities. Secondly, the machine learning model is used directly to give the first sketch of the landscape of Q-Fano varieties in dimension eight. This is joint work with Tom Coates and Al Kasprzyk.
14:15
14:15
Refined Harder-Narasimhan filtrations in moduli theory
Abstract
We introduce a notion of refined Harder-Narasimhan filtration, defined abstractly for algebraic stacks satisfying natural conditions. Examples include moduli stacks of objects at the heart of a Bridgeland stability condition, moduli stacks of K-semistable Fano varieties, moduli of principal bundles on a curve, and quotient stacks. We will explain how refined Harder-Narasimhan filtrations are closely related both to stratifications and to the asymptotics of certain analytic flows, relating and expanding work of Kirwan and Haiden-Katzarkov-Kontsevich-Pandit, respectively. In the case of quotient stacks by the action of a torus, the refined Harder-Narasimhan filtration can be computed in terms of convex geometry.