Research group
Geometry
Mon, 26 Feb 2024
14:15
L4

Hessian geometry of $G_2$-moduli spaces

Thibault Langlais
(Oxford)
Abstract

The moduli space of torsion-free $G_2$-structures on a compact $7$-manifold $M$ is a smooth manifold, locally diffeomorphic to an open subset of $H^3(M)$. It is endowed with a natural metric which arises as the Hessian of a potential, the properties of which are still poorly understood. In this talk, we will review what is known of the geometry of $G_2$-moduli spaces and present new formulae for the fourth derivative of the potential and the curvatures of the associated metric. We explain some interesting consequences for the simplest examples of $G_2$-manifolds, when the universal cover of $M$ is $\mathbb{R}^7$ or $\mathbb{R}^3 \times K3$. If time permits, we also make some comments on the general case.

Mon, 29 Jan 2024
14:15
L4

Floer cohomology for symplectic ${\mathbb C}^*$-manifolds

Alexander Ritter
(Oxford)
Abstract

In this joint work with Filip Zivanovic, we construct symplectic cohomology for a class of symplectic manifolds that admit ${\mathbb C}^*$-actions and which project equivariantly and properly to a convex symplectic manifold. The motivation for studying these is a large class of examples known as Conical Symplectic Resolutions, which includes quiver varieties, resolutions of Slodowy varieties, and hypertoric varieties. These spaces are highly non-exact at infinity, so along the way we develop foundational results to be able to apply Floer theory. Motivated by joint work with Mark McLean on the Cohomological McKay Correspondence, our goal is to describe the ordinary cohomology of the resolution in terms of a Morse-Bott spectral sequence for positive symplectic cohomology. These spectral sequences turn out to be quite computable in many examples. We obtain a filtration on ordinary cohomology by cup-product ideals, and interestingly the filtration can be dependent on the choice of circle action.

Mon, 05 Feb 2024
14:15
L4

Infinite-time Singularities of Lagrangian Mean Curvature Flow

Albert Wood
(Kings College London)
Abstract
Lagrangian mean curvature flow is the name given to the phenomenon that, in a Calabi-Yau manifold, the class of Lagrangian submanifolds is preserved under mean curvature flow. An influential conjecture of Thomas and Yau, refined since by Joyce, proposes to utilise the Lagrangian mean curvature flow to prove that certain Lagrangian submanifolds may be expressed as a connect sum of volume minimising 'special Lagrangians'.
 
This talk is an exposition of recent joint work with Wei-Bo Su and Chung-Jun Tsai, in which we exhibit a Lagrangian mean curvature flow which exists for infinite time and converges to an immersed special Lagrangian. This demonstrates one mechanism by which the above decomposition into special Lagrangians may occur, and is also the first example of an infinite -time singularity of Lagrangian mean curvature flow. The work is a parabolic analogue of work of Dominic Joyce and Yng-Ing Lee on desingularisation of special Lagrangians with conical singularities, and is inspired by the work of Simon Brendle and Nikolaos Kapouleas on ancient solutions of the Ricci flow.
Mon, 19 Feb 2024
14:15
L4

Loop group action on symplectic cohomology

Cheuk Yu Mak
(University of Southhampton)
Abstract

For a compact Lie group $G$, its massless Coulomb branch algebra is the $G$-equivariant Borel-Moore homology of its based loop space. This algebra is the same as the algebra of regular functions on the BFM space. In this talk, we will explain how this algebra acts on the equivariant symplectic cohomology of Hamiltonian $G$-manifolds when the symplectic manifolds are open and convex. This is a generalization of the closed case where symplectic cohomology is replaced with quantum cohomology. Following Teleman, we also explain how it relates to the Coulomb branch algebra of cotangent-type representations. This is joint work with Eduardo González and Dan Pomerleano.

Mon, 04 Mar 2024
14:15
L4

Significance of rank zero Donaldson-Thomas (DT) invariants in curve counting theories

Sohelya Feyzbakhsh
(Imperial College London)
Abstract
Fix a Calabi-Yau 3-fold X of Picard rank one satisfying the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda, such as the quintic 3-fold. I will first describe two methods to achieve explicit formulae relating rank zero Donaldson-Thomas (DT) invariants to Pandharipande-Thomas (PT) invariants using wall-crossing with respect to weak Bridgeland stability conditions on X. As applications, I will find sharp Castelnuovo-type bounds for PT invariants and explain how combining these explicit formulas with S-duality in physics enlarges the known table of Gopakumar-Vafa (GV) invariants. The second part is joint work with string theorists Sergei Alexandrov, Albrecht Klemm, Boris Pioline, and Thorsten Schimannek.
Mon, 22 Jan 2024
14:15
L4

A special class of $k$-harmonic maps inducing calibrated fibrations

Spiro Karigiannis
(University of Waterloo)
Abstract

Let $(M, g)$ be a Riemannian manifold equipped with a calibration $k$-form $\alpha$. In earlier work with Cheng and Madnick (AJM 2021), we studied the analytic properties of a special class of $k$-harmonic maps into $M$ satisfying a first order nonlinear PDE, whose images (away from a critical set) are $\alpha$-calibrated submanifolds of $M$. We call these maps Smith immersions, as they were originally introduced in an unpublished preprint of Aaron Smith. They have nice properties related to conformal geometry, and are higher-dimensional analogues of the $J$-holomorphic map equation. In new joint work (arXiv:2311.14074) with my PhD student Anton Iliashenko, we have obtained analogous results for maps out of $M$. Slightly more precisely, we define a special class of $k$-harmonic maps out of $M$, satisfying a first order nonlinear PDE, whose fibres (away from a critical set) are $\alpha$-calibrated submanifolds of $M$. We call these maps Smith submersions. I will give an introduction to both of these sets of equations, and discuss many future questions.

Mon, 12 Feb 2024
14:15
L4

Palais-Smale sequences for the prescribed Ricci curvature functional

Artem Pulemotov
(University of Queensland, Australia)
Abstract

On homogeneous spaces, solutions to the prescribed Ricci curvature equation coincide with the critical points of the scalar curvature functional subject to a constraint. We provide a complete description of Palais--Smale sequences for this functional. As an application, we obtain new existence results for the prescribed Ricci curvature equation, which enables us to observe previously unseen phenomena. Joint work with Wolfgang Ziller (University of Pennsylvania).

Mon, 09 Oct 2023
14:15
L4

How homotopy theory helps to classify algebraic vector bundles

Mura Yakerson
(Oxford)
Abstract

Classically, topological vector bundles are classified by homotopy classes of maps into infinite Grassmannians. This allows us to study topological vector bundles using obstruction theory: we can detect whether a vector bundle has a trivial subbundle by means of cohomological invariants. In the context of algebraic geometry, one can ask whether algebraic vector bundles over smooth affine varieties can be classified in a similar way. Recent advances in motivic homotopy theory give a positive answer, at least over an algebraically closed base field. Moreover, the behaviour of vector bundles over general base fields has surprising connections with the theory of quadratic forms.

Mon, 20 Nov 2023
14:15
L4

A theory of type B/C/D enumerative invariants

Chenjing Bu
(Oxford)
Abstract

We propose a theory of enumerative invariants for structure groups of type B/C/D, that is, for the orthogonal and symplectic groups. For example, we count orthogonal or symplectic principal bundles on projective varieties, and there is also a quiver analogue called self-dual quiver representations. We discuss two different flavours of these invariants, namely, motivic invariants and homological invariants, the former of which can be used to define Donaldson–Thomas invariants in type B/C/D. We also discuss algebraic structures arising from the relevant moduli spaces, including Hall algebras, Joyce's vertex algebras, and modules for these algebras, which are used to write down wall-crossing formulae for our invariants.

Mon, 06 Nov 2023
14:15
L4

The New $\mu$-Invariants: Infinite-Dimensional Morse Indices and New Invariants of $G_2$-Manifolds

Laurence Mayther
(Cambridge)
Abstract

There are two main methods of constructing compact manifolds with holonomy $G_2$, viz. resolution of singularities (first applied by Joyce) and twisted connect sum (first applied by Kovalev).  In the second case, there is a known invariant (the $\overline{\nu}$-invariant, introduced by Crowley–Goette–Nordström) which can, in many cases, be used to distinguish between different examples.  This invariant, however, has limitations; in particular, it cannot be computed on the $G_2$-manifolds constructed by resolution of singularities.

 

In this talk, I shall begin by discussing the notion of a $G_2$-manifold and the $\overline{\nu}$-invariant and its limitations.  In the context of this, I shall then introduce two new invariants of $G_2$-manifolds, termed $\mu$-invariants, and explain why these promise to overcome these limitations, in particular being well-suited to, and computable on, Joyce's examples of $G_2$-manifolds.  These invariants are related to $\eta$- and $\zeta$-invariants and should be regarded as the Morse indices of a $G_2$-manifold when it is viewed as a critical point of certain Hitchin functionals.  Time permitting, I shall explain how to prove a closed formula for the invariants on the orbifolds used in Joyce's construction, using Epstein $\zeta$-functions.

Subscribe to Geometry and Analysis Seminar