14:15
14:15
14:15
Loop group action on symplectic cohomology
Abstract
For a compact Lie group $G$, its massless Coulomb branch algebra is the $G$-equivariant Borel-Moore homology of its based loop space. This algebra is the same as the algebra of regular functions on the BFM space. In this talk, we will explain how this algebra acts on the equivariant symplectic cohomology of Hamiltonian $G$-manifolds when the symplectic manifolds are open and convex. This is a generalization of the closed case where symplectic cohomology is replaced with quantum cohomology. Following Teleman, we also explain how it relates to the Coulomb branch algebra of cotangent-type representations. This is joint work with Eduardo González and Dan Pomerleano.
14:15
Significance of rank zero Donaldson-Thomas (DT) invariants in curve counting theories
Abstract
14:15
A special class of $k$-harmonic maps inducing calibrated fibrations
Abstract
Let $(M, g)$ be a Riemannian manifold equipped with a calibration $k$-form $\alpha$. In earlier work with Cheng and Madnick (AJM 2021), we studied the analytic properties of a special class of $k$-harmonic maps into $M$ satisfying a first order nonlinear PDE, whose images (away from a critical set) are $\alpha$-calibrated submanifolds of $M$. We call these maps Smith immersions, as they were originally introduced in an unpublished preprint of Aaron Smith. They have nice properties related to conformal geometry, and are higher-dimensional analogues of the $J$-holomorphic map equation. In new joint work (arXiv:2311.14074) with my PhD student Anton Iliashenko, we have obtained analogous results for maps out of $M$. Slightly more precisely, we define a special class of $k$-harmonic maps out of $M$, satisfying a first order nonlinear PDE, whose fibres (away from a critical set) are $\alpha$-calibrated submanifolds of $M$. We call these maps Smith submersions. I will give an introduction to both of these sets of equations, and discuss many future questions.
14:15
Palais-Smale sequences for the prescribed Ricci curvature functional
Abstract
On homogeneous spaces, solutions to the prescribed Ricci curvature equation coincide with the critical points of the scalar curvature functional subject to a constraint. We provide a complete description of Palais--Smale sequences for this functional. As an application, we obtain new existence results for the prescribed Ricci curvature equation, which enables us to observe previously unseen phenomena. Joint work with Wolfgang Ziller (University of Pennsylvania).
14:15
How homotopy theory helps to classify algebraic vector bundles
Abstract
Classically, topological vector bundles are classified by homotopy classes of maps into infinite Grassmannians. This allows us to study topological vector bundles using obstruction theory: we can detect whether a vector bundle has a trivial subbundle by means of cohomological invariants. In the context of algebraic geometry, one can ask whether algebraic vector bundles over smooth affine varieties can be classified in a similar way. Recent advances in motivic homotopy theory give a positive answer, at least over an algebraically closed base field. Moreover, the behaviour of vector bundles over general base fields has surprising connections with the theory of quadratic forms.
14:15
A theory of type B/C/D enumerative invariants
Abstract
We propose a theory of enumerative invariants for structure groups of type B/C/D, that is, for the orthogonal and symplectic groups. For example, we count orthogonal or symplectic principal bundles on projective varieties, and there is also a quiver analogue called self-dual quiver representations. We discuss two different flavours of these invariants, namely, motivic invariants and homological invariants, the former of which can be used to define Donaldson–Thomas invariants in type B/C/D. We also discuss algebraic structures arising from the relevant moduli spaces, including Hall algebras, Joyce's vertex algebras, and modules for these algebras, which are used to write down wall-crossing formulae for our invariants.
14:15
The New $\mu$-Invariants: Infinite-Dimensional Morse Indices and New Invariants of $G_2$-Manifolds
Abstract
There are two main methods of constructing compact manifolds with holonomy $G_2$, viz. resolution of singularities (first applied by Joyce) and twisted connect sum (first applied by Kovalev). In the second case, there is a known invariant (the $\overline{\nu}$-invariant, introduced by Crowley–Goette–Nordström) which can, in many cases, be used to distinguish between different examples. This invariant, however, has limitations; in particular, it cannot be computed on the $G_2$-manifolds constructed by resolution of singularities.
In this talk, I shall begin by discussing the notion of a $G_2$-manifold and the $\overline{\nu}$-invariant and its limitations. In the context of this, I shall then introduce two new invariants of $G_2$-manifolds, termed $\mu$-invariants, and explain why these promise to overcome these limitations, in particular being well-suited to, and computable on, Joyce's examples of $G_2$-manifolds. These invariants are related to $\eta$- and $\zeta$-invariants and should be regarded as the Morse indices of a $G_2$-manifold when it is viewed as a critical point of certain Hitchin functionals. Time permitting, I shall explain how to prove a closed formula for the invariants on the orbifolds used in Joyce's construction, using Epstein $\zeta$-functions.
14:15
Vertex algebras from divisors on Calabi-Yau threefolds
Abstract
We construct vertex algebras associated to divisors $S$ in toric Calabi-Yau threefolds $Y$, satisfying conjectures of Gaiotto-Rapcak and Feigin-Gukov, and in particular such that the characters of these algebras are given by a local analogue of the Vafa-Witten partition function of the underlying reduced subvariety $S^{red}$. These results are part of a broader program to establish a dictionary between the enumerative geometry of coherent sheaves on surfaces and Calabi-Yau threefolds, and the representation theory of vertex algebras and affine Yangian-type quantum groups.
14:15
L-infinity liftings of semiregularity maps and deformations
Abstract
After a brief introduction to the semiregularity maps of Severi, Kodaira and Spencer, and Bloch, I will focus on the Buchweitz-Flenner semiregularity map and on its importance for the deformation theory of coherent sheaves.
The subject of this talk is the construction of a lifting of each component of the Buchweitz-Flenner semiregularity map to an L-infinity morphism between DG-Lie algebras, which allows to interpret components of the semiregularity map as obstruction maps of morphisms of deformation functors.
As a consequence, we obtain that the semiregularity map annihilates all obstructions to deformations of a coherent sheaf on a complex projective manifold. Based on a joint work with R. Bandiera and M. Manetti.