Research group
Geometry
Mon, 13 Nov 2023
14:15
L4

Floer theory and cobordism classes of exact Lagrangians

Noah Porcelli
(Imperial College London)
Abstract

We apply recent ideas in Floer homotopy theory to some questions in symplectic topology. We show that Floer homology can detect smooth structures of certain Lagrangians, as well as using this to find restrictions on symplectic mapping class groups. This is based on joint work-in-progress with Ivan Smith.

Mon, 23 Oct 2023
14:15
L4

Einstein metrics on the Ten-Sphere

Matthias Wink
(Münster)
Abstract

In this talk we give an introduction to the topic of Einstein metrics on spheres. In particular, we prove the existence of three non-round Einstein metrics with positive scalar curvature on $S^{10}.$ Previously, the only even-dimensional spheres known to admit non-round Einstein metrics were $S^6$ and $S^8.$ This talk is based on joint work with Jan Nienhaus.

Mon, 03 Jun 2024
14:15
L4

Shifted Lagrange multipliers method

Young-Houn Kiem
(KIAS, Seoul)
Abstract

The Lagrange multipliers method relates critical points on a submanifold with those on an enlarged space. In derived algebraic geometry, we are allowed to consider a more general type of functions called shifted functions and thus a shifted version of the Lagrange multipliers method. If we start with quasi-smooth derived stacks, the Borisov-Joyce-Oh-Thomas virtual Lagrangian cycle of the critical locus coincides with the cosection localized virtual fundamental cycle of the enlarged space. This immediately implies the quantum Lefschetz principle of Chang-Li and an analogous result for branched covers. Based on a joint work with Hyeonjun Park. 

Mon, 30 Oct 2023
14:15
L4

Existence of harmonic maps in higher dimensions

Mikhail Karpukhin
(University College London)
Abstract

Harmonic maps from surfaces to other manifolds is a fundamental object of geometric analysis with many applications, for example to minimal surfaces. In particular, there are many available methods of constructing them such, such as using complex geometry, min-max methods or flow techniques. By contrast, much less is known for harmonic maps from higher dimensional manifolds. In the present talk I will explain the role of dimension in this problem and outline the recent joint work with D. Stern, where we provide a min-max construction for higher-dimensional harmonic maps. If time permits, an application to eigenvalue optimisation problems will be discussed. Based on joint work with D. Stern.

 

Mon, 15 Jan 2024
14:15
L4

Stability conditions for line bundles on nodal curves

Nicola Pagani
(University of Liverpool)
Abstract

Mathematicians have been interested in the problem of compactifying the Jacobian variety of curves since the mid XIX century. In this talk we will discuss how all 'reasonable' compactified Jacobians of nodal curves can be classified combinatorically. This suffices to obtain a combinatorial classification of all 'reasonable' compactified universal (over the moduli spaces of stable curves) Jacobians. This is a joint work with Orsola Tommasi.

Tue, 13 Jun 2023
15:30
L1

Computing vertical Vafa-Witten invariants

Noah Arbesfeld
(Imperial College, London)
Abstract

I'll present a computation in the algebraic approach to Vafa-Witten invariants of projective surfaces, as introduced by Tanaka-Thomas. The invariants are defined by integration over moduli spaces of stable Higgs pairs on surfaces and are formed from contributions of components. The physical notion of S-duality translates to conjectural symmetries between these contributions.  One component, the "vertical" component, is a nested Hilbert scheme on a surface. I'll explain work in preparation with M. Kool and T. Laarakker in which we express invariants of this component in terms of a certain quiver variety, the instanton moduli space of torsion-free framed sheaves on $\mathbb{P}^2$. Using a recent identity of Kuhn-Leigh-Tanaka, we deduce constraints on Vafa-Witten invariants conjectured by Göttsche-Kool-Laarakker. One consequence is a formula for the contribution of the vertical component to refined Vafa-Witten invariants in rank 2.

Tue, 16 May 2023
15:30
L2

Topological recursion, exact WKB analysis, and the (uncoupled) BPS Riemann-Hilbert problem

Omar Kidwai
(University of Birmingham)
Abstract
The notion of BPS structure describes the output of the Donaldson-Thomas theory of CY3 triangulated categories, as well as certain four-dimensional N=2 QFTs. Bridgeland formulated a certain Riemann-Hilbert-like problem associated to such a structure, seeking functions in the ℏ plane with given asymptotics whose jumping is controlled by the BPS (or DT) invariants. These appear in the description of natural complex hyperkahler metrics ("Joyce structures") on the tangent bundle of the stability space,and physically correspond to the "conformal limit". 
 
Starting from the datum of a quadratic differential on a Riemann surface X, I'll briefly recall how to associate a BPS structure to it, and explain, in the simplest examples, how to produce a solution to the corresponding Riemann-Hilbert problem using a procedure called topological recursion, together with exact WKB analysis of the resulting "quantum curve". Based on joint work with K. Iwaki.
Tue, 25 Apr 2023
15:30

TBA

Andres Ibanez Nunez
(University of Oxford)
Mon, 12 Jun 2023
14:15
L4

Resolutions of finite quotient singularities and quiver varieties

Steven Rayan
(quanTA Centre / University of Saskatchewan)
Abstract

Finite quotient singularities have a long history in mathematics, intertwining algebraic geometry, hyperkähler geometry, representation theory, and integrable systems.  I will highlight the correspondences at play here and how they culminate in Nakajima quiver varieties, which continue to attract interest in geometric representation theory and physics.  I will motivate some recent work of G. Bellamy, A. Craw, T. Schedler, H. Weiss, and myself in which we show that, remarkably, all of the resolutions of a particular finite quotient singularity are realized by a certain Nakajima quiver variety, namely that of the 5-pointed star-shaped quiver.  I will place this work in the wider context of the search for McKay-type correspondences for finite subgroups of $\mathrm{SL}(n,\mathbb{C})$ on the one hand, and of the construction of finite-dimensional-quotient approximations to meromorphic Hitchin systems and their integrable systems on the other hand.  The Hitchin system perspective draws upon my prior joint works with each of J. Fisher and L. Schaposnik, respectively. Time permitting, I will speculate upon the symplectic duality of Higgs and Coulomb branches in this setting.

Mon, 05 Jun 2023
14:15
L4

Ancient solutions to the Ricci flow coming out of spherical orbifolds

Alix Deruelle
(Sorbonne Université)
Abstract

Given a 4-dimensional Einstein orbifold that cannot be desingularized by smooth Einstein metrics, we investigate the existence of an ancient solution to the Ricci flow coming out of such a singular space. In this talk, we will focus on singularities modeled on a cone over $\mathbb{R}P^3$ that are desingularized by gluing Eguchi-Hanson metrics to get a first approximation of the flow. We show that a parabolic version of the corresponding obstructed gluing problem has a  smooth solution: the bubbles are shown to grow exponentially in time, a phenomenon that is intimately connected to the instability of such orbifolds. Joint work with Tristan Ozuch.

Subscribe to Geometry and Analysis Seminar