Mon, 20 Feb 2023

15:30 - 16:30
L1

Random forests and the OSp(1|2) nonlinear sigma model

Roland Bauerschmidt
Abstract

Given a finite graph, the arboreal gas is the measure on forests (subgraphs without cycles) in which each edge is weighted by a parameter β greater than 0. Equivalently this model is bond percolation conditioned to be a forest, the independent sets of the graphic matroid, or the q→0 limit of the random cluster representation of the q-state Potts model. Our results rely on the fact that this model is also the graphical representation of the nonlinear sigma model with target space the fermionic hyperbolic plane H^{0|2}, whose symmetry group is the supergroup OSp(1|2).

The main question we are interested in is whether the arboreal gas percolates, i.e., whether for a given β the forest has a connected component that includes a positive fraction of the total edges of the graph. We show that in two dimensions a Mermin-Wagner theorem associated with the OSp(1|2) symmetry of the nonlinear sigma model implies that the arboreal gas does not percolate for any β greater than 0. On the other hand, in three and higher dimensions, we show that percolation occurs for large β by proving that the OSp(1|2) symmetry of the non-linear sigma model is spontaneously broken. We also show that the broken symmetry is accompanied by massless fluctuations (Goldstone mode). This result is achieved by a renormalisation group analysis combined with Ward identities from the internal symmetry of the sigma model.

Thu, 23 Feb 2023

14:00 - 15:00
L1

Flows around some soft corals

Laura Miller
(University of Arizona)
Further Information

 

Please note the change of time for this seminar at 2pm GMT.

Laura Miller is Professor of Mathematics. Her research group, 'investigate[s] changes in the fluid dynamic environment of organisms as they grow or shrink in size over evolutionary or developmental time.' (Taken from her group website here: https://sites.google.com/site/swimflypump/home?authuser=0) 

Abstract

In this presentation, I will discuss the construction and results of numerical simulations quantifying flows around several species of soft corals. In the first project, the flows near the tentacles of xeniid soft corals are quantified for the first time. Their active pulsations are thought to enhance their symbionts' photosynthetic rates by up to an order of magnitude. These polyps are approximately 1 cm in diameter and pulse at frequencies between approximately 0.5 and 1 Hz. As a result, the frequency-based Reynolds number calculated using the tentacle length and pulse frequency is on the order of 10 and rapidly decays as with distance from the polyp. This introduces the question of how these corals minimize the reversibility of the flow and bring in new volumes of fluid during each pulse. We estimate the Péclet number of the bulk flow generated by the coral as being on the order of 100–1000 whereas the flow between the bristles of the tentacles is on the order of 10. This illustrates the importance of advective transport in removing oxygen waste. In the second project, the flows through the elaborate branching structures of gorgonian colonies are considered.  As water moves through the elaborate branches, it is slowed, and recirculation zones can form downstream of the colony. At the smaller scale, individual polyps that emerge from the branches expand their tentacles, further slowing the flow. At the smallest scale, the tentacles are covered in tiny pinnules where exchange occurs. We quantified the gap to diameter ratios for various gorgonians at the scale of the branches, the polyp tentacles and the pinnules. We then used computational fluid dynamics to determine the flow patterns at all three levels of branching. We quantified the leakiness between the branches, tentacles and pinnules over the biologically relevant range of Reynolds numbers and gap-to-diameter ratios, and found that the branches and tentacles can act as either leaky rakes or solid plates depending upon these dimensionless parameters. The pinnules, in contrast, mostly impede the flow. Using an agent-based modeling framework, we quantified plankton capture as a function of the gap-to diameter ratio of the branches and the Reynolds number. We found that the capture rate depends critically on both morphology and Reynolds number. 

Mon, 16 Jan 2023

15:30 - 16:30
L1

Topologies and functions on unparameterised path space

Thomas Cass
Abstract

The signature is a non-commutative exponential that appeared in the foundational work of K-T Chen in the 1950s. It is also a fundamental object in the theory of rough paths (Lyons, 1998). More recently, it has been proposed, and used, as part of a practical methodology to give a way of summarising multimodal, possibly irregularly sampled, time-ordered data in a way that is insensitive to its parameterisation. A key property underpinning this approach is the ability of linear functionals of the signature to approximate arbitrarily any compactly supported and continuous function on (unparameterised) path space. We present some new results on the properties of a selection of topologies on the space of unparameterised paths. We discuss various applications in this context.
This is based on joint work with William Turner.
 

Mon, 27 Feb 2023

15:30 - 16:30
L1

Trading on a noisy signal of future stock price evolution — explicit solution to an infinite-dimensional stochastic optimal control problem

Peter Bank (TU Berlin)
Abstract

We consider an investor who is dynamically informed about the future evolution of one of the independent Brownian motions driving a stock's price fluctuations. The resulting rough semimartingale dynamics allow for strong arbitrage, but with linear temporary price impact the resulting optimal investment problem with exponential utility turns out to be well posed. The dynamically revealed Brownian path segment makes the problem infinite-dimensional, but by considering its convex-analytic dual problem, we show that it still can be solved explicitly and we give some financial-economic insights into the optimal investment strategy and the properties of maximum expected utility. (This is joint work with Yan Dolinsky, Hebrew University of Jerusalem).

Mon, 06 Feb 2023

15:30 - 16:30
L1

Monte-Carlo simulations for wall-bounded incompressible viscous fluid flows

Zhongmin Qian
Abstract

In this talk I will present several new stochastic representations for
solutions of the Navier-Stokes equations in a wall-bounded region,
in the spirit of mean field theory. These new representations are
obtained by using the duality of conditional laws associated with the Taylor diffusion family.
By using these representation, Monte-Carlo simulations for boundary fluid flows, including
boundary turbulence, may be implemented. Numerical experiments are given to demonstrate the usefulness of this approach.

Mon, 06 Mar 2023

15:30 - 16:30
L1

Brownian excursions, conformal loop ensembles and critical Liouville quantum gravity

Ellen Powell
Abstract

It was recently shown by Aidekon and Da Silva how to construct a growth fragmentation process from a planar Brownian excursion. I will explain how this same growth fragmentation process arises in another setting: when one decorates a certain “critical Liouville quantum gravity random surface” with a conformal loop ensemble of parameter 4. This talk is based on joint work with Juhan Aru, Nina Holden and Xin Sun. 
 

Mon, 23 Jan 2023

15:30 - 16:30
L1

Particle exchange models with several conservation laws

Patrícia Gonçalves
Abstract

In this talk I will present an exclusion process with different types of particles: A, B and C. This last type can be understood as holes. Two scaling limits will be discussed: hydrodynamic limits in the boundary driven setting; and equilibrium fluctuations for an evolution on the torus. In the later case, we distinguish several cases, that depend on the choice of the jump rates, for which we get in the limit either the stochastic Burgers equation or the Ornstein-Uhlenbeck equation. These results match with predictions from non-linear fluctuating hydrodynamics. 
(Joint work with G. Cannizzaro, A. Occelli, R. Misturini).

Mon, 30 Jan 2023
13:00
L1

Double holography and Page curves in Type IIB

Christoph Uhlemann
(Oxford )
Abstract

In recent progress on the black hole information paradox, Page curves consistent with unitarity have been obtained in 2d models and in bottom-up braneworld models using the notion of double holography. In this talk we discuss top-down models realizing 4d black holes coupled to a bath in Type IIB string theory and obtain Page curves. We make the ideas behind double holography precise in these models and address causality puzzles which have arisen in the bottom-up models, leading to a refinement of their interpretation.
 

Mon, 23 Jan 2023
13:00
L1

Higgsing SCFTs in d=3,4,5,6

Zhenghao Zhong
(Oxford )
Abstract

We study supersymmetric gauge theories with 8 supercharges in d=3,4,5,6. For these theories, one can perform Higgsings by turning on VEVs of scalar fields. However, this process can often be difficult when dealing with superconformal field theories (SCFTs) where the Lagrangian is often not known. Using techniques of magnetic quivers and a new algorithm we call "Inverted Quiver Subtraction", we show how one can easily obtain the SCFT(s) after Higgsing. This technique can be equally well applied to SCFTs in d=3,4,5,6. 

Mon, 28 Nov 2022

13:00 - 14:00
L1

Integrability of the Liouville theory

Antti Kupiainen
(University of Helsinki)
Further Information

This is in joint with the String Theory seminar. Note the unusual date and time.

Abstract

Conformal Field Theories (CFT) are believed to be exactly solvable once their primary scaling fields and their 3-point functions are known. This input is called the spectrum and structure constants of the CFT respectively. I will review recent work where this conformal bootstrap program can be rigorously carried out for the case of Liouville CFT, a theory that plays a fundamental role in 2d random surface theory and many other fields in physics and mathematics. Liouville CFT has a probabilistic formulation on an arbitrary Riemann surface and the bootstrap formula can be seen as a "quantization" of the plumbing construction of surfaces with marked points axiomatically discussed earlier by Graeme Segal. Joint work with Colin Guillarmou, Remi Rhodes and Vincent Vargas

Subscribe to L1