Fri, 25 Nov 2022

16:00 - 17:00
L1

Maths Meets Stats

Matthew Buckland (Statistics) and Ofir Gorodetsky (North Wing)
Abstract

Matthew Buckland 
Branching Interval Partition Diffusions

We construct an interval-partition-valued diffusion from a collection of excursions sampled from the excursion measure of a real-valued diffusion, and we use a spectrally positive Lévy process to order both these excursions and their start times. At any point in time, the interval partition generated is the concatenation of intervals where each excursion alive at that point contributes an interval of size given by its value. Previous work by Forman, Pal, Rizzolo and Winkel considers self-similar interval partition diffusions – and the key aim of this work is to generalise these results by dropping the self-similarity condition. The interval partition can be interpreted as an ordered collection of individuals (intervals) alive that have varying characteristics and generate new intervals during their finite lifetimes, and hence can be viewed as a class of Crump-Mode-Jagers-type processes.

 

 

Ofir Gorodetsky
Smooth and rough numbers


We all know and love prime numbers, but what about smooth and rough numbers?
We'll define y-smooth numbers -- numbers whose prime factors are all less than y. We'll explain their application in cryptography, specifically to factorization of integers.
We'll shed light on their density, which is modelled using a peculiar differential equation. This equation appears naturally in probability theory.
We'll also explain the dual notion to smooth numbers, that of y-rough numbers: numbers whose prime factors are all bigger than y, and in some sense generalize primes.
We'll explain their importance in sieve theory. Like smooth numbers, their density has interesting properties and will be surveyed.

 

Fri, 11 Nov 2022

16:00 - 17:00
L1

Managing your supervisor

Eva Antonopoulou
Abstract

Your supervisor is the person you will interact with on a scientific level most of all during your studies here. As a result, it is vital that you establish a good working relationship. But how should you do this? In this session we discuss tips and tricks for getting the most out of your supervisions to maximize your success as a researcher. Note that this session will have no faculty in the audience in order to allow people to speak openly about their experiences. 

Fri, 04 Nov 2022

16:00 - 17:00
L1

Illustrating Mathematics

Joshua Bull and Christoph Dorn
Abstract

What should we be thinking about when we're making a diagram for a paper? How do we help it to express the right things? Or make it engaging? What kind of colour palette is appropriate? What software should we use? And how do we make this process as painless as possible? Join Joshua Bull and Christoph Dorn for a lively Fridays@4 session on illustrating mathematics, as they share tips, tricks, and their own personal experiences in bringing mathematics to life via illustrations.

Fri, 28 Oct 2022

16:00 - 17:00
L1

North Meets South

Ilia Smilga and Charles Parker
Abstract

Ilia Smilga
Margulis spacetimes and crooked planes

We are interested in the following problem: which groups can act 
properly on R^n by affine transformations, or in other terms, can occur 
as a symmetry group of a "regular affine tiling"? If we additionally 
require that they preserve a Euclidean metric (i.e. act by affine 
isometries), then these groups are well-known: they all contain a 
finite-index abelian subgroup. If we remove this requirement, a 
surprising result due to Margulis is that the free group can act 
properly on R^3. I shall explain how to construct such an action.

 

Charles Parker
Unexpected Behavior in Finite Elements for Linear Elasticity
One of the first problems that finite elements were designed to approximate is the small deformations of a linear elastic body; i.e. the 2D/3D version of Hooke's law for springs from elementary physics. However, for nearly incompressible materials, such as rubber, certain finite elements seemingly lose their approximation power. After briefly reviewing the equations of linear elasticity and the basics of finite element methods, we will spend most of the time looking at a few examples that highlight this unexpected behavior. We conclude with a theoretical result that (mostly) explains these findings.

 

 

Fri, 21 Oct 2022

16:00 - 17:00
L1

Maintaining your mental fitness as a graduate student or postdoc

Rebecca Reed and Ian Griffiths
Abstract

Academic research can be challenging and can bring with it difficulties in maintaining good mental health. This session will be led by Rebecca Reed, Mental Health First Aid (MHFA) Instructor, Meditation & Yoga Teacher and Personal Development Coach and owner of wellbeing company Siendo. Rebecca will talk about how we can maintain good mental fitness, recognizing good practices to ensure we avoid mental-health difficulties before they begin. We have deliberately set this session to be at the beginning of the academic year in this spirit. We will also talk about maintaining good mental health specifically in the academic community.   

Fri, 14 Oct 2022

16:00 - 17:00
L1

Meet and Greet Event

Amy Kent and Ellen Luckins
Abstract

Abstract: 

Welcome (back) to Fridays@4! To start the new academic year in this session we’ll introduce what Fridays@4 is for our new students and colleagues. This session will be a chance to meet current students and ECRs from across Maths and Stats who will share their hints and tips on conducting successful research in Oxford. There will be lots of time for questions, discussions and generally meeting more people across the two departments – everyone is welcome!

 

Mon, 21 Nov 2022

15:30 - 16:30
L1

Mapping Space Signatures

Darrick Lee
Abstract

We introduce the mapping space signature, a generalization of the path signature for maps from higher dimensional cubical domains, which is motivated by the topological perspective of iterated integrals by K. T. Chen. We show that the mapping space signature shares many of the analytic and algebraic properties of the path signature; in particular it is universal and characteristic with respect to Jacobian equivalence classes of cubical maps. This is joint work with Chad Giusti, Vidit Nanda, and Harald Oberhauser.

Mon, 24 Oct 2022
13:00
L1

Decomposition and condensation defects in 3d

Ling Lin
(Oxford)
Abstract

Quantum field theories (QFTs) in d dimensions that posses a (d-1)-form symmetry are conjectured to decompose into disjoint “universes”, each of which is itself a (local and unitary) QFT. I will give an overview of our current understanding of decomposition, and then discuss how this phenomenon occurs in the fusion of condensation defects of certain 3d QFTs. This gives a “microscopic” explanation of why in these instances, the fusion coefficient can be taken as an integer rather than a general TQFT.

Mon, 31 Oct 2022
13:00
L1

Holomorphic twist and Confinement

Jingxiang Wu
(Oxford)
Abstract

I will describe a procedure, known as holomorphic twist, to isolate protected quantities in supersymmetric quantum field theories. The resulting theories are holomorphic, interacting and have infinite dimensional symmetries, analogous to the holomorphic half of a 2D CFT. I will explain how to study quantum corrections to these symmetries and other  higher operations.
As a surprise, we find a novel UV manifestation of
confinement, dubbed "holomorphic confinement," in the example of pure
SU(N) super Yang-Mills.

Mon, 17 Oct 2022
13:00
L1

Semiclassics for Large Quantum Numbers

Mark Mezei
(Oxford)
Abstract

According to the correspondence principle, classical physics emerges in the limit of large quantum numbers. We examine three examples of the semiclassical description of conformal field theory data: large charge boundary operators in the O(2) model, large spin impurities in the free triplet scalar field theory and large charge Wilson lines in QED. By simultaneously taking the coupling to zero and quantum numbers to infinity, we can connect the microscopic to the emergent classical description smoothly.

Subscribe to L1