Tue, 28 Oct 2025
13:00
L2

Periods, the Hodge structure and the arithmetic of Calabi-Yau manifolds

Xenia de la Ossa
(Oxford )
Abstract

It is well known to mathematicians that there is a deep relationship between the arithmetic of algebraic varieties and their geometry.  

These areas of mathematics have a fascinating connection with physical theories and vice versa.  Examples include Feynman graphs and black hole physics.  There are very many relationships however I will focus on the structure of black hole solutions of superstring theories on Calabi-Yau manifolds. 

 
The main quantities of interest in the arithmetic context are the numbers of points of the variety, considered as varieties over finite fields, and how these numbers vary with the parameters of the varieties. The generating function for these numbers is the zeta function, about which much is known in virtue of the Weil conjectures. The first surprise, for a physicist, is that the numbers of these points, and so the zeta function, are given by expressions that involve the periods of the manifold.  These same periods determine also many aspects of the physical theory, including the properties of black hole solutions. 

 
I will discuss a number of interesting topics related to the zeta function, the corresponding L-function, and the appearance of modularity for one parameter families of Calabi-Yau manifolds. I will focus on an example for which the quartic numerator of the zeta function of a one parameter family factorises into two quadrics at special values of the parameter. These special values, for which the underlying manifold is smooth, satisfy an algebraic equation with coefficients in Q, so independent of any particular prime.  The significance of these factorisations is that they are due to the existence of black hole attractor points in the sense of type II supergravity which predict the splitting of the Hodge structure over Q at these special values of the parameter.  Modular groups and modular forms arise in relation to these attractor points, in a way that is familiar to mathematicians as a consequence of the Langland’s Program, but which is a surprise to a physicist.  To our knowledge, the rank two attractor points that were  found together with Mohamed  Elmi and Duco van Straten by the application of  number theoretic techniques, provide the first explicit examples of such attractor points for Calabi-Yau manifolds.  
Tue, 21 Oct 2025
13:00
L2

Linking chaos and geometry

Zhenbin Yang
(Tsinghua University)
Abstract

In recent years, there has been increasing evidence for a geometric representation of quantum chaos within Einstein's theory of general relativity. Despite the lack of a complete theoretical framework, this overview will explore various examples of this phenomenon. It will also discuss the lessons we have learned from it to address several existing puzzles in quantum gravity, such as the black hole information paradox and off-shell wormhole geometries.

Tue, 14 Oct 2025
13:00
L2

SymTFTs for continuous spacetime symmetries

Nicola Dondi
(ICTP)
Abstract

Symmetry Topological Field Theories (SymTFTs) are topological field theories that encode the symmetry structure of global symmetries in terms of a theory in one higher dimension. While SymTFTs for internal (global) symmetries have been highly successful in characterizing symmetry aspects in the last few years, a corresponding framework for spacetime symmetries remains unexplored. We propose an extension of the SymTFT framework to include spacetime symmetries. In particular, we propose a SymTFT for the conformal symmetry in various spacetime dimensions. We demonstrate that certain BF-type theories, closely related to topological gravity theories, possess the correct topological operator content and boundary conditions to realize the conformal algebra of conformal field theories living on boundaries. As an application, we show how effective theories with spontaneously broken conformal symmetry can be derived from the SymTFT, and we elucidate how conformal anomalies can be reproduced in the presence of even-dimensional boundaries.
 

Tue, 04 Nov 2025
13:00
L2

Anomalies of Defect Parameter Spaces and a Spin-Flux Duality

Brandon Rayhaun
(IAS)
Abstract

I will explain how the irreversibility of the renormalization group together with anomalies, including anomalies in the space of coupling constants, can be used to constrain the IR phases of defects in familiar quantum field theories. As an example, I will use these techniques to provide evidence for a conjectural "spin-flux duality" which describes how certain line operators are mapped across particle/vortex duality in 2+1d.

Tue, 17 Jun 2025
13:00
L2

Applications of Equivariant Localization in Supergravity

Christopher Couzens
(Oxford)
Abstract

Einstein’s equations are difficult to solve and if you want to compute something in holography knowing an explicit metric seems to be essential. Or is it? For some theories, observables, such as on-shell actions and free energies, are determined solely in terms of topological data, and an explicit metric is not needed. One of the key tools that has recently been used for this programme is equivariant localization, which gives a method of computing integrals on spaces with a symmetry. In this talk I will give a pedestrian introduction to equivariant localization before showing how it can be used to compute the on-shell action of 6d Romans Gauged supergravity. 
 

Tue, 13 May 2025
13:00
L2

Computation of flavour parameters in string theory

Andrei Constantin
(Oxford )
Abstract

I will outline some recent progress in identifying realistic models of particle physics in heterotic string theory, supported by several mathematical and computational advancements which include: analytic expressions for bundle valued cohomology dimensions on complex projective varieties, heuristic methods of discrete optimisation such as reinforcement learning and genetic algorithms, as well as efficient neural-network approaches for the computation of Ricci-flat metrics on Calabi-Yau manifolds, hermitian Yang-Mills connections on holomorphic vector bundles and bundle valued harmonic forms. I will present a proof of concept computation of quark masses in a string model that recovers the exact standard model spectrum and discuss several other models that can accommodate the entire range of flavour parameters observed in the standard model. 


 

Subscribe to L2