Mon, 22 Apr 2024
16:00
L2

On Unique Sums in Abelian Groups

Benjamin Bedert
(University of Oxford)
Abstract

In this talk, we will study the problem in additive combinatorics of determining for a finite Abelian group $G$ the size of its smallest subset $A\subset G$ that has no unique sum, meaning that for every two $a_1,a_2\in A$ we can write $a_1+a_2=a’_1+a’_2$ for different $a’_1,a’_2\in A$. We begin by using classical rectification methods to obtain the previous best lower bounds of the form $|A|\gg \log p(G)$, which stood for 50 years. Our main aim is to outline the proof of a recent improvement and discuss some of its key notions such as additive dimension and the density increment method. This talk is based on Bedert, B. On Unique Sums in Abelian Groups. Combinatorica (2023).

Tue, 07 May 2024
13:00
L2

Continuous symmetries, non-compact TQFTs, and holography

Andrea Antinucci
(SISSA)
Abstract

The progress in our understanding of symmetries in QFT has led to the proposal that the complete information on a symmetry structure is encoded in a TQFT in one dimension higher, known as the Symmetry TFT. This picture is well understood for finite symmetries, and I will explain the extension to continuous symmetries in the first part of the talk, based on a paper with F. Benini. This extension requires studying new TQFTs with a non-compact spectrum of operators. Like for finite symmetries, these TQFTs capture anomalies and topological manipulations via their topological boundary conditions. The main new ingredient for continuous symmetries is dynamical gauging, which is described by maps between different TQFTs. I will use this to derive the Symmetry TFT for the non-invertible chiral symmetry of QED. Moreover, the various TQFTs related by dynamical gauging arise as different boundary conditions of a unique TQFT in two dimensions higher. In the second part of the talk, based on work in progress with F. Benini and G. Rizi, I will use these tools to derive some new connections between the Symmetry TFTs and the universal EFTs describing the spontaneous symmetry breaking of any (generalized) global symmetry.

Mon, 06 May 2024
16:00
L2

On twisted modular curves

Franciszek Knyszewski
(University of Oxford)
Abstract

Modular curves are moduli spaces of elliptic curves equipped with certain level structures. This talk will be concerned with how the attendant theory has been used to answer questions about the modularity of elliptic curves over $\mathbb{Q}$ and over quadratic fields. In particular, we will outline two instances of the modularity switching technique over totally real fields: the 3-5 trick of Wiles and the 3-7 trick of Freitas, Le Hung and Siksek. The recent work of Caraiani and Newton over imaginary quadratic fields naturally leads one to consider the descent theory of 'twisted' modular curves, and this will be the focus of the final part of the talk.

Tue, 23 Apr 2024
13:00
L2

What's done cannot be undone: non-invertible symmetries

Shu-Heng Shao
(Stony Brook University)
Abstract

In massless QED, we find that the classical U(1) chiral symmetry is not completely broken by the Adler-Bell-Jackiw anomaly. Rather, it is resurrected as a generalized global symmetry labeled by the rational numbers. Intuitively, this new global symmetry in QED is a composition of the naive axial rotation and a fractional quantum Hall state. The conserved symmetry operators do not obey a group multiplication law, but a non-invertible fusion algebra. We further generalize our construction to QCD, and show that the neutral pion decay can be derived from a matching condition of the non-invertible global symmetry.

Mon, 18 Mar 2024 14:15 -
Tue, 19 Mar 2024 15:00
L2

Euler Equations and Mixed-Type Problems in Gas Dynamics and Geometry

Professor Dehua Wang
(University of Pittsburgh)
Further Information

This course is running as part of the National PDE Network Meeting being held in Oxford 18-21 March 2024, and jointly with the 13th Oxbridge PDE conference.

The course is broken into 3 sessions over two days, with all sessions taking place in L2:

14:15-14:55:    Short Course I-1 Monday 18 March

9:45-10:25:    Short Course I-2 Tuesday 19 March

14:15-14:55:    Short Course I-3 Tuesday 19 March

Euler Equations and Mixed-Type Problems in Gas Dynamics and Geometry WANG_Oxford2024.pdf

Abstract

 In this short course, we will discuss the Euler equations and applications in gas dynamics and geometry. First, the basic theory of Euler equations and mixed-type problems will be reviewed. Then we will present the results on the transonic flows past obstacles, transonic flows in the fluid dynamic formulation of isometric embeddings, and the transonic flows in nozzles. We will discuss global solutions and stability obtained through various techniques and approaches. The short course consists of three parts and is accessible to PhD students and young researchers.

Mon, 18 Mar 2024 16:15 -
Tue, 19 Mar 2024 17:00
L2

Characteristic Boundary Value Problems and Magneto-Hydrodynamics

Professor Paolo Secchi
(University of Brescia)
Further Information

This course is running as part of the National PDE Network Meeting being held in Oxford 18-21 March 2024, and jointly with the 13th Oxbridge PDE conference.

The course is broken into 3 sessions over two days, thus, with all sessions taking place in L2:

16:15-16:55:    Short Course II-1 Monday 18 March Characteristic Boundary Problems and Magneto-HydrodynamicsSECCHI-part 1_0.pdf

11:35-12:15:    Short Course II-2 Tuesday 19 March Characteristic Boundary Problems and Magneto-Hydrodynamics SECCHI-part 2.pdf

16:15-16:55:    Short Course II-3 Tuesday 19 March Characteristic Boundary Problems and Magneto-Hydrodynamics SECCHI-part 3.pdf

 

Abstract

The course aims to provide an introduction to the theory of initial boundary value problems for Friedrichs symmetrizable systems, with particular interest for the applications to the equations of ideal Magneto-Hydrodynamics (MHD). 

We first analyse different kinds of boundary conditions and present the main results about the well-posedness. In the case of the characteristic boundary, we discuss the possible loss of regularity in the normal direction to the boundary and the use of suitable anisotropic Sobolev spaces in MHD.  

Finally, we give a short introduction to the Kreiss-Lopatinskii approach and discuss a simple boundary value problem for the wave equation that may admit estimates with a loss of derivatives from the data. 

 

Tue, 30 Apr 2024
13:00
L2

Determinants in self-dual N = 4 SYM and twistor space

Frank Coronado
(McGill)
Abstract
Self-dual Yang-Mills famously have a description in terms of twistors; one of the outstanding questions is how to promote it to full (non-self-dual) Yang-Mills and learn about its dynamics. In this talk, I will present some progress in this direction in the "most symmetric" Yang-Mills theory; namely N=4 super Yang-Mills in four dimensions. I will express the full Yang-Mills theory as a deformation of self-dual Yang-Mills. By treating the deformation perturbatively and using the formalism of twistors, I will write down the loop-integrands of correlation functions of determinant operators in the planar limit at any order in the 't Hooft coupling. Interestingly, the final expression is given by a partition function of a "dual" matrix model. This in turn manifests a ten-dimensional structure that combines spacetime and R-charge symmetries of SYM.
 


 

Mon, 04 Mar 2024
16:00
L2

The dispersion method and beyond: from primes to exceptional Maass forms

Alexandru Pascadi
(University of Oxford)
Abstract
The dispersion method has found an impressive number of applications in analytic number theory, from bounded gaps between primes to the greatest prime factors of quadratic polynomials. The method requires bounding certain exponential sums, using deep inputs from algebraic geometry, the spectral theory of GL2 automorphic forms, and GLn automorphic L-functions. We'll give a broad outline of this process, which combines various types of number theory; time permitting, we'll also discuss the key ideas behind some new results.
 
Mon, 26 Feb 2024
16:00
L2

The Metaplectic Representation is Faithful

Christopher Chang, Simeon Hellsten, Mario Marcos Losada, and Sergiu Novac.
(University of Oxford)
Abstract

Iwasawa algebras are completed group rings that arise in number theory, so there is interest in understanding their prime ideals. For some special Iwasawa algebras, it is conjectured that every non-zero such ideal has finite codimension and in order to show this it is enough to establish the faithfulness of the modules arising from the completion of highest weight modules. In this talk we will look at methods for doing this and apply them to the specific case of the metaplectic representation for the symplectic group.

Mon, 19 Feb 2024
16:00
L2

On entropy of arithmetic functions

Fei Wei
(University of Oxford)
Abstract

In this seminar, I will talk about a notion of entropy of arithmetic functions and some properties of this entropy.  This notion was introduced to study Sarnak's Moebius Disjointness Conjecture.

Subscribe to L2