13:00
A Background-Independent Target Space Action for String Theory
Abstract
Recently, much attention has been paid to the intersection between coarse geometry and graph theory, giving rise to the fresh, exciting new field aptly known as ‘coarse graph theory’. One aspect of this area is the study of so-called ‘fat minors’, a large-scale analogue of the usual idea of a graph minor.
In this talk, I will introduce this area and motivate some interesting questions and conjectures. I will then sketch a proof that a finitely presented group is either virtually planar or contains arbitrarily ‘fat’ copies of every finite graph.
No prior knowledge or passion for graph theory will be assumed in this talk.
During the talk I will describe my research on host-pathogen interactions during lung infections. Various modelling approaches have been used, including a hybrid multiscale individual-based model that we have developed, which simulates pulmonary infection spread, immune response and treatment within in a section of human lung. The model contains discrete agents which model the spatio-temporal interactions (migration, binding, killing etc.) of the pathogen and immune cells. Cytokine and oxygen dynamics are also included, as well as Pharmacokinetic/Pharmacodynamic models, which are incorporated via PDEs. I will also describe ongoing work to develop a continuum model, comparing the spatial dynamics resulting from these different modelling approaches. I will focus in the most part on two infectious diseases: Tuberculosis and COVID-19.
Anand Oza is Associate Professor in the Department of Mathematical Sciences as a part of the Complex Flows and Soft Matter (CFSM) Group. He is interested in fluid mechanics and nonlinear dynamics, with applications to soft matter physics and biology. His research utilizes a combination of analytical techniques and numerical simulations, collaborating with experimentalists whenever possible.
The beautiful displays exhibited by fish schools and bird flocks have long fascinated scientists, but the role of their complex behavior remains largely unknown. In particular, the influence of hydrodynamic interactions on schooling and flocking has been the subject of debate in the scientific literature. I will present a model for flapping wings that interact hydrodynamically in an inviscid fluid, wherein each wing is represented as a plate that executes a prescribed time-periodic kinematics. The model generalizes and extends thin-airfoil theory by assuming that the flapping amplitude is small, and permits consideration of multiple wings through the use of conformal maps and multiply-connected function theory. We find that the model predictions agree well with experimental data on freely-translating, flapping wings in a water tank. The results are then used to motivate a reduced-order model for the temporally nonlocal interactions between schooling wings, which consists of a system of nonlinear delay-differential equations. We obtain a PDE as the mean-field limit of these equations, which we find supports traveling wave solutions. Generally, our results indicate how hydrodynamics may mediate schooling and flocking behavior in biological contexts.
Realizing chiral global symmetries on a finite lattice is a long-standing challenge in lattice gauge theory, with potential implications for non-perturbative regularization of the Standard Model. One of the simplest examples of such a symmetry is the axial U(1) symmetry of the 1+1d massless Dirac fermion field theory: it acts by equal and opposite phase rotations on the left- and right-moving Weyl components of the Dirac field. This field theory also has a vector U(1) symmetry which acts identically on left- and right-movers. The two U(1) symmetries exhibit a mixed anomaly, known as the chiral anomaly. In this talk, we will discuss how both symmetries are realized as ordinary U(1) symmetries of an "ultra-local" lattice Hamiltonian, on a finite-dimensional Hilbert space. Intriguingly, the anomaly of the Abelian U(1) symmetries in the infrared (IR) field theory is matched on the lattice by a non-Abelian Lie algebra. The lattice symmetry forces the low-energy phase to be gapless, closely paralleling the effects of the anomaly in the field theory.
This is a report on the ongoing joint project with Giovanni Felder and David Kazhdan. I'll describe a conjectural way to set up the integration of the superstring measure on the moduli space of supercurves, including a brief review of the necessary supergeometry. The main theorem is that this setup works for genus 2 with no punctures.
In "Higher Operations in Perturbation Theory", Gaiotto, Kulp, and Wu discussed Feynman integrals that control certain deformations in quantum field theory. The corresponding integrands are differential forms in Schwinger parameters. Specifically, the integrand $\alpha$ is associated to a single topological direction of the theory.
I will show how the combinatorial properties of graph polynomials lead to a relatively simple, explicit formula for $\alpha$, that can be evaluated quickly with a computer. This is interesting for two reasons. Firstly, knowing the explicit formula leads to an elementary proof of the fact that $\alpha$ squares to zero, which asserts the absence of quantum corrections in topological field theories of two (or more) dimensions, known as Kontsevich's formality theorem. Secondly, the underlying constructions and proofs are not intrinsically limited to topological theories. In this sense, they serve as a particularly instructive example for simplifications that can occur in Feynman integrals with numerators.
Physics beyond relativistic invariance and without Lorentz (or Poincaré) symmetry and the geometry underlying these non-Lorentzian structures have become very fashionable of late. This is primarily due to the discovery of uses of non-Lorentzian structures in various branches of physics, including condensed matter physics, classical and quantum gravity, fluid dynamics, cosmology, etc. In this talk, I will be talking about one such theory - Carrollian theory, where the Carroll group replaces the Poincare group as the symmetry group of interest. Interestingly, any null hypersurface is a Carroll manifold and the Killing vectors on the null manifold generate Carroll algebra. Historically, Carroll group was first obtained from the Poincaré group via a contraction by taking the speed of light going to zero limit as a “degenerate cousin of the Poincaré group”. I will shed some light on Carrollian fermions, i.e. fermions defined on generic null surfaces. Due to the degenerate nature of the Carroll manifold, there exist two distinct Carroll Clifford algebras and, correspondingly, two different Carroll fermionic theories. I will discuss them in detail. Then, I will show some examples; when the dispersion relation becomes trivial, i.e. energy bands flatten out, there can be a possibility of the emergence of Carroll symmetry.
At the heart of both cross-section calculations at the Large Hadron Collider and gravitational wave physics lie the evaluation of Feynman integrals. These integrals are meromorphic functions (or distributions) of the parameters on which they depend and understanding their analytic structure has been an ongoing quest for over 60 years. In this talk, I will demonstrate how these integrals fits within the framework of generalized hypergeometry by Gelfand, Kapranov, and Zelevinsky (GKZ). In this framework the singularities are simply calculated by the principal A-determinant and I will show that some Feynman integrals can be used to generate Cohen-Macaulay rings which greatly simplify their analysis. However, not every integral fits within the GKZ framework and I will show how the singularities of every Feynman integral can be calculated using Whitney stratifications.