Fri, 25 Oct 2024
12:00
L2

Twisted eleven-dimensional supergravity and exceptional simple infinite dimensional super-Lie algebras

Surya Raghavendran
(Edinburgh)
Abstract

I will describe a holomorphic-topological field theory in eleven-dimensions which captures a 1/16-BPS subsector of eleven-dimensional supergravity. Remarkably, asymptotic symmetries of the theory on flat space and on twisted versions of the AdS_4 x S^7 and AdS_7 x S^4 backgrounds recover three of the five infinite dimensional exceptional simple super-Lie algebras. I will discuss some applications of this fact, including character formulae for indices counting multigravitons and the contours of a program to holographically describe 1/16-BPS local operators in the 6d (2,0) SCFTs of type A_{N-1}. This talk is based on joint work, much in progress, with Fabian Hahner, Ingmar Saberi, and Brian Williams.

Tue, 26 Nov 2024
13:00
L2

Late time saturation of the Einstein-Rosen bridge dual to the Double Scaled SYK model

Vijay Balasubramanian
(UPenn and Oxford)
Abstract

In this talk I will explain how the size of the Einstein-Rosen (ER) bridge dual to the Double Scaled SYK (DSSYK) model saturates at late times because of finiteness of the underlying quantum Hilbert space.  I will extend recent work implying that the ER bridge size equals the spread complexity of the dual DSSYK theory with an appropriate initial state.  This work shows that the auxiliary "chord basis'' used to solve the DSSYK theory is the physical Krylov basis of the spreading quantum state.  The ER bridge saturation follows from the vanishing of the Lanczos spectrum, derived by methods from Random Matrix Theory (RMT).

Tue, 15 Oct 2024
13:00
L2

Mirror Symmetry and Level-rank Duality for 3d N=4 Rank 0 SCFTs

Niklas Garner
(Oxford )
Abstract

Three-dimensional QFTs with 8 supercharges (N=4 supersymmetry) are a rich playground rife with connections to mathematics. For example, they admit two topological twists and furnish a three-dimensional analogue of the famous mirror symmetry of two-dimensional N=(2,2) QFTs, creatively called 3d mirror symmetry, that exchanges these twists. Recently, there has been increased interest in so-called rank 0 theories that typically do not admit Lagrangian descriptions with manifest N=4 supersymmetry, but their topological twists are expected to realize finite, semisimple TQFTs which are amenable to familiar descriptions in terms of, e.g., modular tensor categories and/or rational vertex operator algebras. In this talk, based off of joint work (arXiv:2406.00138) with Thomas Creutzig and Heeyeon Kim, I will introduce two families of rank 0 theories exchanged by 3d mirror symmetry and various mathematical conjectures stemming from our analysis thereof.

Tue, 19 Nov 2024
13:00
L2

Symmetry topological field theory and generalised Kramers–Wannier dualities

Clement Delcamp
(IHES)
Abstract

A modern perspective on symmetry in quantum theories identifies the topological invariance of a symmetry operator within correlation functions as its defining property. Within this paradigm, a framework has emerged enabling a calculus of topological defects in terms of a higher-dimensional topological quantum field theory. In this seminar, I will discuss aspects of this construction for Euclidean lattice field theories. Exploiting this framework, I will present generalisations of the celebrated Kramers-Wannier duality of the Ising model, as combinations of gauging procedures and generalised Fourier transforms of the local weights encoding the dynamics. If time permits, I will discuss implications of this framework for the real-space renormalisation group flow of these theories.

Tue, 05 Nov 2024
13:00
L2

Optimal transport, Ricci curvature, and gravity compactifications

Andrea Mondino
(Oxford )
Abstract

In the talk, I will start by recalling some basics of optimal transport and how it can be used to define Ricci curvature lower bounds for singular spaces, in a synthetic sense. Then, I will present some joint work with De Luca-De Ponti and Tomasiello,  where we show that some singular spaces,  naturally showing up in gravity compactifications (namely, Dp-branes),  enter the aforementioned setting of non-smooth spaces satisfying Ricci curvature lower bounds in a synthetic sense.  Time permitting, I will discuss some applications to the Kaluza-Klein spectrum.

Tue, 12 Nov 2024
13:00
L2

Machine Learning and Calabi-Yau Manifolds

Magdalena Larfors
(Uppsala)
Abstract

: With motivation from string compactifications, I will present work on the use of machine learning methods for the computation of geometric and topological properties of Calabi-Yau manifolds.

Tue, 29 Oct 2024
13:00
L2

Fivebrane Stars

Yoav Zigdon
(Cambridge )
Abstract
The low energy limit of string theory contains solutions of large redshift, either near an event horizon or extended objects. Alday, de Boer, and Messamah compared the massless BTZ black hole to the ensemble average of horizonless BPS solutions with the same charges and found them to differ. I will show that averaging gives rise to a spherically symmetric and horizon-free "fivebrane star" solution by employing an effective string description for Type IIA NS5-branes. By further including internal excitations of the extended objects in this description, we obtain solutions of smaller sizes and greater redshifts relative to those with purely transverse excitations, thereby approaching the black hole phase.


 

Mon, 17 Jun 2024

11:00 - 12:00
L2

Mathematical modelling to support New Zealand’s Covid-19 response

Professor Mike Plank
(Dept of Mathematics & Statistics University of Canterbury)
Abstract

In this talk, I will describe some of the ways in which mathematical modelling contributed to the Covid-19 pandemic response in New Zealand. New Zealand adopted an elimination strategy at the beginning of the pandemic and used a combination of public health measures and border restrictions to keep incidence of Covid-19 low until high vaccination rates were achieved. The low or zero prevalence for first 18 months of the pandemic called for a different set of modelling tools compared to high-prevalence settings. It also generated some unique data that can give valuable insights into epidemiological characteristics and dynamics. As well as describing some of the modelling approaches used, I will reflect on the value modelling can add to decision making and some of the challenges and opportunities in working with stakeholders in government and public health.        

Tue, 14 May 2024
13:00
L2

3d gravity from an ensemble of approximate CFTs

Gabriel Wong
(Oxford )
Abstract

One of the major insights gained from holographic duality is the relation between the physics of black holes and quantum chaotic systems. This relation is made precise in the duality between two dimensional JT gravity and random matrix theory.  In this work, we generalize this to a duality between AdS3 gravity and a random ensemble of approximate CFT's.  The latter is described by a combined tensor and matrix model, describing the OPE coefficients and spectrum of a theory that approximately satisfies the bootstrap constraints.   We show that the Feynman diagrams of the random ensemble produce a sum over 3 manifolds that agrees with the partition function of 3d gravity.  A crucial element of this dictionary is the Virasoro TQFT, which defines the bulk gravitational path integral via the cutting and sewing relations of topological field theory.  Time permitting, we will explain why this TQFT has gravitational edge modes degrees of freedom whose entanglement gives rise to gravitational entropy.

Mon, 13 May 2024

18:30 - 20:30
L2

International Women in Maths Day Celebration

Further Information

Join us on Monday 13th May at 6:30 in L2 to celebrate International Women in Maths Day. Traditionally celebrated on May 12th, Mirzakhani's birthday, this is an occasion to celebrate all the wonderful women and non-binary people that make up our mathematical community. This event will be open to all, regardless of gender identity. 

 
We will be screening the film 'The Mathematical Vision of Maryam Mirzakhani' from 6:30. This will be followed by free pizza, snacks, and drinks in the mezzanine area. To ensure we get enough pizza for everyone and cater to all dietary requirements, please fill in the following google form https://forms.gle/kQ5phShD2416CUof6
Subscribe to L2