Mon, 27 May 2024
16:00
L2

Special values of L-functions

Aleksander Horawa
(University of Oxford)
Abstract

In 1735, Euler observed that $ζ(2) = 1 + \frac{1}{2²} + \frac{1}{3²} + ⋯ = \frac{π²}{6}$. This is related to the famous identity $ζ(−1) "=" 1 + 2 + 3 + ⋯ "=" \frac{−1}{12}$. In general, values of the Riemann zeta function at positive even integers are equal to rational numbers multiplied by a power of $π$. The values at positive odd integers are much more mysterious; for example, Apéry proved that $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ⋯$ is irrational, but we still don't know if $ζ(5) = 1 + \frac{1}{2⁵} + \frac{1}{3⁵} + ⋯$ is rational or not! In this talk, we will explain the arithmetic significance of these values, their generalizations to Dirichlet/Dedekind L−functions, and to L−functions of elliptic curves. We will also present a new formula for $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ...$ in terms of higher algebraic cycles which came out of an ongoing project with Lambert A'Campo.

Mon, 10 Jun 2024
16:00
L2

Duffin-Schaeffer meets Littlewood - a talk on metric Diophantine approximation

Manuel Hauke
(University of York)
Abstract

Khintchine's Theorem is one of the cornerstones in metric Diophantine approximation. The question of removing the monotonicity condition on the approximation function in Khintchine's Theorem led to the recently proved Duffin-Schaeffer conjecture. Gallagher showed an analogue of Khintchine's Theorem for multiplicative Diophantine approximation, again assuming monotonicity. In this talk, I will discuss my joint work with L. Frühwirth about a Duffin-Schaeffer version for Gallagher's Theorem. Furthermore, I will give a broader overview on various questions in metric Diophantine approximation and demonstrate the deep connection to both analytic and combinatorial number theory that is hidden inside the proof of these statements.

Mon, 13 May 2024
16:00
L2

Eigenvarieties and p-adic propagation of automorphy

Zachary Feng
(University of Oxford)
Abstract

Functoriality is a key feature in Langlands’ conjectured relationship between automorphic representations and Galois representations; it predicts that certain Galois representations are automorphic, i.e. should come from automorphic representations. We discuss the idea of $p$-adic propagation of automorphy, which seeks to establish the automorphy of everything in a “neighborhood” given the automorphy of something in that neighborhood. The “neighborhoods” that we consider will be the irreducible components of a $p$-adic analytic space called the eigenvariety, which parameterizes $p$-adic automorphic representations. This technique was introduced by Newton and Thorne in their proof of symmetric power functoriality, and can be adapted to investigate similar problems.

Tue, 28 May 2024
13:00
L2

Disordered quantum critical fixed points from holography

Andrew Lucas
(Boulder )
Abstract

In this talk I will describe the systematic construction of strongly interacting RG fixed points with a finite disorder strength.  Such random-field disorder is quite common in condensed matter experiment, necessitating an understanding of the effects of this disorder on the properties of such fixed points. In the past, such disordered fixed points were accessed using e.g. epsilon expansions in perturbative quantum field theory, using the replica method to treat disorder.  I will show that holography gives an alternative picture for RG flows towards disordered fixed points.  In holography, spatially inhomogeneous disorder corresponds to inhomogeneous boundary conditions for an asymptotically-AdS spacetime, and the RG flow of the disorder strength is captured by the solution to the Einstein-matter equations. Using this construction, we have found analytically-controlled RG fixed points with a finite disorder strength.  Our construction accounts for, and explains, subtle non-perturbative geometric effects that had previously been missed.  Our predictions are consistent with conformal perturbation theory when studying disordered holographic CFTs, but the method generalizes and gives new models of disordered metallic quantum criticality.

Mon, 29 Apr 2024
16:00
L2

New Lower Bounds For Cap Sets

Fred Tyrrell
(University of Bristol)
Abstract

A cap set is a subset of $\mathbb{F}_3^n$ with no solutions to $x + y + z = 0$ other than when $x = y = z$, or equivalently no non-trivial $3$-term arithmetic progressions. The cap set problem asks how large a cap set can be, and is an important problem in additive combinatorics and combinatorial number theory. In this talk, I will introduce the problem, give some background and motivation, and describe how I was able to provide the first progress in 20 years on the lower bound for the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough $n$, there is always a cap set in $\mathbb{F}_3^n$ of size at least $2.218^n$. I will then also discuss recent developments, including an extension of this result by Google DeepMind.

Mon, 20 May 2024
16:00
L2

Inhomogeneous multiplicative diophantine approximation

Kate Thomas
(University of Oxford)
Abstract

Introducing an inhomogeneous shift allows for generalisations of many multiplicative results in diophantine approximation. In this talk, we discuss an inhomogeneous version of Gallagher's theorem, established by Chow and Technau, which describes the rates for which we can approximate a typical product of fractional parts. We will sketch the methods used to prove an earlier version of this result due to Chow, using continued fraction expansions and geometry of numbers to analyse the structure of Bohr sets and bound sums of reciprocals of fractional parts.

Mon, 22 Apr 2024
16:00
L2

On Unique Sums in Abelian Groups

Benjamin Bedert
(University of Oxford)
Abstract

In this talk, we will study the problem in additive combinatorics of determining for a finite Abelian group $G$ the size of its smallest subset $A\subset G$ that has no unique sum, meaning that for every two $a_1,a_2\in A$ we can write $a_1+a_2=a’_1+a’_2$ for different $a’_1,a’_2\in A$. We begin by using classical rectification methods to obtain the previous best lower bounds of the form $|A|\gg \log p(G)$, which stood for 50 years. Our main aim is to outline the proof of a recent improvement and discuss some of its key notions such as additive dimension and the density increment method. This talk is based on Bedert, B. On Unique Sums in Abelian Groups. Combinatorica (2023).

Tue, 07 May 2024
13:00
L2

Continuous symmetries, non-compact TQFTs, and holography

Andrea Antinucci
(SISSA)
Abstract

The progress in our understanding of symmetries in QFT has led to the proposal that the complete information on a symmetry structure is encoded in a TQFT in one dimension higher, known as the Symmetry TFT. This picture is well understood for finite symmetries, and I will explain the extension to continuous symmetries in the first part of the talk, based on a paper with F. Benini. This extension requires studying new TQFTs with a non-compact spectrum of operators. Like for finite symmetries, these TQFTs capture anomalies and topological manipulations via their topological boundary conditions. The main new ingredient for continuous symmetries is dynamical gauging, which is described by maps between different TQFTs. I will use this to derive the Symmetry TFT for the non-invertible chiral symmetry of QED. Moreover, the various TQFTs related by dynamical gauging arise as different boundary conditions of a unique TQFT in two dimensions higher. In the second part of the talk, based on work in progress with F. Benini and G. Rizi, I will use these tools to derive some new connections between the Symmetry TFTs and the universal EFTs describing the spontaneous symmetry breaking of any (generalized) global symmetry.

Mon, 06 May 2024
16:00
L2

On twisted modular curves

Franciszek Knyszewski
(University of Oxford)
Abstract

Modular curves are moduli spaces of elliptic curves equipped with certain level structures. This talk will be concerned with how the attendant theory has been used to answer questions about the modularity of elliptic curves over $\mathbb{Q}$ and over quadratic fields. In particular, we will outline two instances of the modularity switching technique over totally real fields: the 3-5 trick of Wiles and the 3-7 trick of Freitas, Le Hung and Siksek. The recent work of Caraiani and Newton over imaginary quadratic fields naturally leads one to consider the descent theory of 'twisted' modular curves, and this will be the focus of the final part of the talk.

Tue, 23 Apr 2024
13:00
L2

What's done cannot be undone: non-invertible symmetries

Shu-Heng Shao
(Stony Brook University)
Abstract

In massless QED, we find that the classical U(1) chiral symmetry is not completely broken by the Adler-Bell-Jackiw anomaly. Rather, it is resurrected as a generalized global symmetry labeled by the rational numbers. Intuitively, this new global symmetry in QED is a composition of the naive axial rotation and a fractional quantum Hall state. The conserved symmetry operators do not obey a group multiplication law, but a non-invertible fusion algebra. We further generalize our construction to QCD, and show that the neutral pion decay can be derived from a matching condition of the non-invertible global symmetry.

Subscribe to L2