Mon, 08 Jul 2019 09:00 -
Wed, 10 Jul 2019 17:00
L2

NetMob 2019

NetMob 2019
(University of Oxford and others)
Further Information

NetMob is the primary conference in the analysis of mobile phone datasets in social, urban, societal and industrial problems. Previous editions in Boston and Milano brought together more than 250 researchers, practitioners and decision-makers from more than 140 institutions and 30 countries.

The 2019 edition of NetMob will take place at the Mathematical Institute of Oxford University in a conference format similar to that of the previous editions: one track of short contributed talks, a simplified submission procedure, no proceedings (except for a book of abstracts), and the possibility to present recent results or results submitted elsewhere.

For more information and how to join click here

Fri, 21 Jun 2019

14:00 - 15:00
L2

Personalised predictive modelling for transcatheter mitral valve replacement

Dr Adelaide De Vecchi
(Department of Biomedical Engineering King’s College London)
Abstract

Mitral regurgitation is one of the most common valve diseases in the UK and contributes to 50% of the transcatheter mitral valve replacement (TMVR) procedures with bioprosthetic valves. TMVR is generally performed in frailer, older patients unlikely to tolerate open-heart surgery or further interventions. One of the side effects of implanting a bioprosthetic valve is a condition known as left ventricular outflow obstruction, whereby the implanted device can partially obstruct the outflow of blood from the left ventricle causing high flow resistance. The ventricle has then to pump more vigorously to provide adequate blood supply to the circulatory system and becomes hypertrophic. This ultimately results in poor contractility and heart failure.
We developed personalised image-based models to characterise the complex relationship between anatomy, blood flow, and ventricular function both before and after TMVR. The model prediction provides key information to match individual patient and device size, such as postoperative changes in intraventricular pressure gradients and blood residence time. Our pilot data from a cohort of 7 TMVR patients identified a correlation between the degree of outflow obstruction and the deterioration of ventricular function: when approximately one third of the outflow was obstructed as a result of the device implantation, significant increases in the flow resistance and the average time spent by the blood inside the ventricle were observed, which are in turn associated with hypertrophic ventricular remodelling and blood stagnation, respectively. Currently, preprocedural planning for TMVR relies largely on anecdotal experience and standard anatomical evaluations. The haemodynamic knowledge derived from the models has the potential to enhance significantly pre procedural planning and, in the long term, help develop a personalised risk scoring system specifically designed for TMVR patients.
 

Fri, 14 Jun 2019

14:00 - 15:00
L2

Reactions, diffusion and volume exclusion in a heterogeneous system of interacting particles

Dr Maria Bruna
(Mathematical Institute University of Oxford)
Abstract


Cellular migration can be affected by short-range interactions between cells such as volume exclusion, long-range forces such as chemotaxis, or reactions such as phenotypic switching. In this talk I will discuss how to incorporate these processes into a discrete or continuum modelling frameworks. In particular, we consider a system with two types of diffusing hard spheres that can react (switch type) upon colliding. We use the method of matched asymptotic expansions to obtain a systematic model reduction, consisting of a nonlinear reaction-diffusion system of equations. Finally, we demonstrate how this approach can be used to study the effects of excluded volume on cellular chemotaxis. This is joint work with Dan Wilson and Helen Byrne.
 

Tue, 02 Apr 2019

11:00 - 16:00
L2

MiLS Meeting on Multiscale modelling techniques and their applications in biology and medicine

Various Speakers
(Mathematical Institute)
Further Information

By Daniele Avitabile on Mar 04, 2019 09:38 pm

The ninth Mathematics in Life Sciences (MiLS) meeting will focus on "Multiscale modelling techniques and their applications in biology and medicine". It will take place on the 2nd of April 2019 from 11am to 4pm, at the University of Oxford. This is the first meeting organised in collaboration with our new members, Sarah Waters (University of Oxford), and  Alessia Annibale (King's College London).

The meeting will consist of two review talks aimed at non-experts, combined with several contributed research talks. The review talks will be given by Oliver Jensen (University of Manchester), and Patrick Farrell (University of Oxford).

Attendance to the meeting is free of charge, but we kindly ask you to register your intention to attend, by sending an email to Nicola.Kirkham@maths.ox.ac.uk

We solicit contributed talks and posters, especially from early career researchers and postgraduate students. If you are interested in giving a talk, please send a title and abstract to Sarah.Waters (waters [at] maths [dot] ox [dot] ac [dot] uk) and Daniele Avitabile (daniele [dot] avitabile [at] nottingham [dot] ac [dot] uk).

You can read more about MiLS here and here and you can subscribe to our low-traffic newsletter here.


Read in browser »

 

Thu, 20 Jun 2019

16:00 - 17:30
L2

A generic construction for high order approximation schemes of semigroups using random grids

Aurélien Alfonsi
(Ecole des Ponts ParisTech)
Abstract

Our aim is to construct high order approximation schemes for general 
semigroups of linear operators $P_{t},t \ge 0$. In order to do it, we fix a time 
horizon $T$ and the discretization steps $h_{l}=\frac{T}{n^{l}},l\in N$ and we suppose
that we have at hand some short time approximation operators $Q_{l}$ such
that $P_{h_{l}}=Q_{l}+O(h_{l}^{1+\alpha })$ for some $\alpha >0$. Then, we
consider random time grids $\Pi (\omega )=\{t_0(\omega )=0<t_{1}(\omega 
)<...<t_{m}(\omega )=T\}$ such that for all $1\le k\le m$, $t_{k}(\omega 
)-t_{k-1}(\omega )=h_{l_{k}}$ for some $l_{k}\in N$, and we associate the approximation discrete 
semigroup $P_{T}^{\Pi (\omega )}=Q_{l_{n}}...Q_{l_{1}}.$ Our main result is the 
following: for any approximation order $\nu $, we can construct random grids $\Pi_{i}(\omega )$ and coefficients 
$c_{i}$, with $i=1,...,r$ such that $P_{t}f=\sum_{i=1}^{r}c_{i} E(P_{t}^{\Pi _{i}(\omega )}f(x))+O(n^{-\nu})$
with the expectation concerning the random grids $\Pi _{i}(\omega ).$ 
Besides, $Card(\Pi _{i}(\omega ))=O(n)$ and the complexity of the algorithm is of order $n$, for any order
of approximation $\nu$. The standard example concerns diffusion 
processes, using the Euler approximation for $Q_l$.
In this particular case and under suitable conditions, we are able to gather the terms in order to produce an estimator of $P_tf$ with 
finite variance.
However, an important feature of our approach is its universality in the sense that
it works for every general semigroup $P_{t}$ and approximations.  Besides, approximation schemes sharing the same $\alpha$ lead to
the same random grids $\Pi_{i}$ and coefficients $c_{i}$. Numerical illustrations are given for ordinary differential equations, piecewise 
deterministic Markov processes and diffusions.

Fri, 08 Mar 2019

14:00 - 15:00
L2

Arrhythmia from dyad to whole-heart: bi-directional coupling between re-entry and spontaneous calcium release

Dr Michael Colman
(Faculty of Biomedical Sciences University of Leeds)
Abstract

The mechanisms underlying the initiation and perpetuation of cardiac arrhythmias are inherently multi-scale: whereas arrhythmias are intrinsically tissue-level phenomena, they have a significant dependence cellular electrophysiological factors. Spontaneous sub-cellular calcium release events (SCRE), such as calcium waves, are a exemplars of the multi-scale nature of cardiac arrhythmias: stochastic dynamics at the nanometre-scale can influence tissue excitation  patterns at the centimetre scale, as triggered action potentials may elicit focal excitations. This latter mechanism has been long proposed to underlie, in particular, the initiation of rapid arrhythmias such as tachycardia and fibrillation, yet systematic analysis of this mechanism has yet to be fully explored. Moreover, potential bi-directional coupling has been seldom explored even in concept.

A major challenge of dissecting the role and importance of SCRE in cardiac arrhythmias is that of simultaneously exploring sub-cellular and tissue function experimentally. Computational modelling provides a potential approach to perform such analysis, but requires new techniques to be employed to practically simulate sub-cellular stochastic events in tissue-scale models comprising thousands or millions of coupled cells.

This presentation will outline the novel techniques developed to achieve this aim, and explore preliminary studies investigating the mechanisms and importance of SCRE in tissue-scale arrhythmia: How do independent, small-scale sub-cellular events overcome electrotonic load and manifest as a focal excitation? How can SCRE focal (and non-focal) dynamics lead to re-entrant excitation? How does long-term re-entrant excitation interact with SCRE to perpetuate and degenerate arrhythmia?

Fri, 22 Feb 2019

11:45 - 13:15
L2

InFoMM CDT Group Meeting

Helen Fletcher, Bogdan Toader, Jessica Williams, Giuseppe Ughi
(Mathematical Institute)
Tue, 12 Jun 2018
14:30
L2

Random graph coloring and the cavity method

Will Perkins
(Birmingham)
Abstract

The last remaining open problem from Erdős and Rényi's original paper on random graphs is the following: for q at least 3, what is the largest d so that the random graph G(n,d/n) is q-colorable with high probability?  A lot of interesting work in probabilistic combinatorics has gone into proving better and better bounds on this q-coloring threshold, but the full answer remains elusive.  However, a non-rigorous method from the statistical physics of glasses - the cavity method - gives a precise prediction for the threshold.  I will give an introduction to the cavity method, with random graph coloring as the running example, and describe recent progress in making parts of the method rigorous, emphasizing the role played by tools from extremal combinatorics.  Based on joint work with Amin Coja-Oghlan, Florent Krzakala, and Lenka Zdeborová.

Subscribe to L2