14:30
14:30
14:00
Analysis of Magnus expansion methods in the semiclassical regime
Abstract
Magnus expansion based methods are an efficient class of integrators for solving Schrödinger equations that feature time dependent potentials such as lasers. These methods have been found to be highly effective in computational quantum chemistry since the pioneering work of Tal Ezer and Kosloff in the early 90s. The convergence of the Magnus expansion, however, is usually understood only for ODEs and traditional analysis suggests a much poorer performance of these methods than observed experimentally. It was not till the work of Hochbruck and Lubich in 2003 that a rigorous analysis justifying the application to PDEs with unbounded operators, such as the Schrödinger equation, was presented. In this talk we will extend this analysis to the semiclassical regime, where the highly oscillatory solution conventionally suggests large errors and a requirement for very small time steps.
16:00
Automorphic Galois Representations attached to Inner Forms of $\mathrm{Sp}_{2n}$
Abstract
In this talk, I will give a brief overview of the Langlands program and Langlands functoriality with reference to the examples of Galois representations attached to cusp forms and the Jacquet-Langlands correspondence for $\mathrm{GL}_2$. I will then explain how one can generalise this idea, sketching a proof of a Jacquet-Langlands type correspondence from $\mathrm{U}_n(B)$, where $B$ is a quaternion algebra, to $\mathrm{Sp}_{2n}$ and showing that one can attach Galois representations to regular algebraic cuspidal automorphic representations of $\mathrm{Sp}_{2n}$.
14:30
Improving the rational Remez algorithm via adaptive barycentric representations
14:00
Kinetic Effects In Drop Dynamics
Abstract
Understanding the outcome of a collision between liquid drops (merge or bounce?) as well their impact and spreading over solid surfaces (splash or spread?) is key for a host of processes ranging from 3d printing to cloud formation. Accurate experimental observation of these phenomena is complex due to the small spatio-temporal scales or interest and, consequently, mathematical modelling and computational simulation become key tools with which to probe such flows.
Experiments show that the gas surrounding the drops can have a key role in the dynamics of impact and wetting, despite the small gas-to-liquid density and viscosity ratios. This is due to the formation of gas microfilms which exert their influence on drops through strong lubrication forces. In this talk, I will describe how these microfilms cannot be described by the Navier-Stokes equations and instead require the development of a model based on the kinetic theory of gases. Simulation results obtained using this model will then be discussed and compared to experimental data.
Computational motion models for cancer imaging
Technological breakthroughs in comprehensive survey of cell phenotypes – can the analytical tools catch up?".
Abstract
The ability to study the transcriptome, proteome – and other aspects – of many individual cells represents one of the most important technical breakthroughs and tools in biology and medical science of the past few years. They are revolutionising study of biological systems and human disease, enabling for example: hypothesis-free identification of rare pathogenic (or protective) cell subsets in chronic diseases, routine monitoring of patient immune phenotypes and direct discovery of mole cular targets in rare cell populations. In parallel, new computational and analytical approaches are being intensively developed to analyse the vast data sets generated by these technologies. However, there is still a huge gap between our ability to generate the data, analyse their technical soundness and actually interpret them. The QBIOX network may provide for a unique opportunity to complement recent investments in Oxford technical capabilities in single-cell technologies with the development of revolutionary, visionary ways of interpreting the data that would help Oxford researchers to compete as leaders in this field.
Please register via https://www.eventbrite.co.uk/e/qbiox-colloquium-trinity-term-2017-ticke…
Mixotrophy: the Missing Link in Ecology
Abstract
The management of natural resources, from fisheries and climate change to gut bacteria colonies, all require the development of ecological models that represent the full spectrum of population interactions, from competition, through mixotrophy and mutualism, to predation.
Mixotrophic plankton, that both photosynthesise and eat other plankton, underpin all marine food webs and help regulate climate by facilitating gas exchange between the ocean and atmosphere. We show the recent discovery that their feeding preferences change with increasing temperature implies climate change could dramatically alter the structure of marine food webs.
We describe a theoretical framework that reveals the key role of mixotrophy in facilitating transitions between trophic interactions. Mixotrophy smoothly and stably links competition to predation, and extends this linkage to include mutualism in both facultative and obligate forms. Such smooth stable transitions further allow the development of eco-evolutionary theory at the population level through quantitative trait modelling.
Gaussian quadrature the Gaussian way
Abstract
Gauss invented Gaussian quadrature following an approach entirely different from the one we now find in textbooks. I will describe leisurely the contents of Gauss's original memoir on quadrature, an impressive piece of mathematics, based on continued fractions, Padé approximation, generating functions, the hypergeometric series and more.