Tue, 21 May 2024
13:00
L2

Scale and conformal invariance in 2-dimensional sigma models

George Papadopoulos
(King's College London)
Abstract

I shall review some aspects of the relationship between scale and conformal invariance in 2-dimensional sigma models.  Then, I shall explain how such an investigation is related to the Perelman's ideas of proving the Poincare' conjecture.  Using this, I shall demonstrate that scale invariant sigma models  with B-field coupling and  compact target space  are conformally invariant. Several examples will also be presented that elucidate the results.  The talk is based on the arXiv paper 2404.19526.

Tue, 22 Oct 2024
13:00
L2

Heterotic islands

Ida Zadeh
(Southampton)
Abstract

In this talk I will discuss asymmetric orbifolds and will focus on their application to toroidal compactifications of heterotic string theory. I will consider theories in 6 and 4 dimensions with 16 supercharges and reduced rank. I will present a novel formalism, based on the Leech lattice, to construct ‘islands’ without vector multiplets.

Mon, 03 Jun 2024
16:00
L2

Upper bounds on large deviations of Dirichlet L-functions in the Q-aspect

Nathan Creighton
(University of Oxford)
Abstract

Congruent numbers are natural numbers which are the area of right angled triangles with all rational sides. This talk will investigate conjectures for the density of congruent numbers up to some value $X$. One can phrase the question of whether a natural number is congruent in terms of whether an elliptic curve has non−zero rank. A theorem of Coates and Wiles connects this to whether the $L$-function associated to this elliptic curve vanishes at $1$. We will mention the conjecture of Keating on the asymptotic density based on random matrix considerations, and prove Tunnell’s Theorem, which connects the question of whether a natural number is a congruent number to counting integral points on varieties. Finally, I will hint at some future work I hope to do on non-vanishing of the $L$-functions.

Mon, 27 May 2024
16:00
L2

Special values of L-functions

Aleksander Horawa
(University of Oxford)
Abstract

In 1735, Euler observed that $ζ(2) = 1 + \frac{1}{2²} + \frac{1}{3²} + ⋯ = \frac{π²}{6}$. This is related to the famous identity $ζ(−1) "=" 1 + 2 + 3 + ⋯ "=" \frac{−1}{12}$. In general, values of the Riemann zeta function at positive even integers are equal to rational numbers multiplied by a power of $π$. The values at positive odd integers are much more mysterious; for example, Apéry proved that $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ⋯$ is irrational, but we still don't know if $ζ(5) = 1 + \frac{1}{2⁵} + \frac{1}{3⁵} + ⋯$ is rational or not! In this talk, we will explain the arithmetic significance of these values, their generalizations to Dirichlet/Dedekind L−functions, and to L−functions of elliptic curves. We will also present a new formula for $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ...$ in terms of higher algebraic cycles which came out of an ongoing project with Lambert A'Campo.

Mon, 10 Jun 2024
16:00
L2

Duffin-Schaeffer meets Littlewood - a talk on metric Diophantine approximation

Manuel Hauke
(University of York)
Abstract

Khintchine's Theorem is one of the cornerstones in metric Diophantine approximation. The question of removing the monotonicity condition on the approximation function in Khintchine's Theorem led to the recently proved Duffin-Schaeffer conjecture. Gallagher showed an analogue of Khintchine's Theorem for multiplicative Diophantine approximation, again assuming monotonicity. In this talk, I will discuss my joint work with L. Frühwirth about a Duffin-Schaeffer version for Gallagher's Theorem. Furthermore, I will give a broader overview on various questions in metric Diophantine approximation and demonstrate the deep connection to both analytic and combinatorial number theory that is hidden inside the proof of these statements.

Mon, 13 May 2024
16:00
L2

Eigenvarieties and p-adic propagation of automorphy

Zachary Feng
(University of Oxford)
Abstract

Functoriality is a key feature in Langlands’ conjectured relationship between automorphic representations and Galois representations; it predicts that certain Galois representations are automorphic, i.e. should come from automorphic representations. We discuss the idea of $p$-adic propagation of automorphy, which seeks to establish the automorphy of everything in a “neighborhood” given the automorphy of something in that neighborhood. The “neighborhoods” that we consider will be the irreducible components of a $p$-adic analytic space called the eigenvariety, which parameterizes $p$-adic automorphic representations. This technique was introduced by Newton and Thorne in their proof of symmetric power functoriality, and can be adapted to investigate similar problems.

Tue, 28 May 2024
13:00
L2

Disordered quantum critical fixed points from holography

Andrew Lucas
(Boulder )
Abstract

In this talk I will describe the systematic construction of strongly interacting RG fixed points with a finite disorder strength.  Such random-field disorder is quite common in condensed matter experiment, necessitating an understanding of the effects of this disorder on the properties of such fixed points. In the past, such disordered fixed points were accessed using e.g. epsilon expansions in perturbative quantum field theory, using the replica method to treat disorder.  I will show that holography gives an alternative picture for RG flows towards disordered fixed points.  In holography, spatially inhomogeneous disorder corresponds to inhomogeneous boundary conditions for an asymptotically-AdS spacetime, and the RG flow of the disorder strength is captured by the solution to the Einstein-matter equations. Using this construction, we have found analytically-controlled RG fixed points with a finite disorder strength.  Our construction accounts for, and explains, subtle non-perturbative geometric effects that had previously been missed.  Our predictions are consistent with conformal perturbation theory when studying disordered holographic CFTs, but the method generalizes and gives new models of disordered metallic quantum criticality.

Mon, 29 Apr 2024
16:00
L2

New Lower Bounds For Cap Sets

Fred Tyrrell
(University of Bristol)
Abstract

A cap set is a subset of $\mathbb{F}_3^n$ with no solutions to $x + y + z = 0$ other than when $x = y = z$, or equivalently no non-trivial $3$-term arithmetic progressions. The cap set problem asks how large a cap set can be, and is an important problem in additive combinatorics and combinatorial number theory. In this talk, I will introduce the problem, give some background and motivation, and describe how I was able to provide the first progress in 20 years on the lower bound for the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough $n$, there is always a cap set in $\mathbb{F}_3^n$ of size at least $2.218^n$. I will then also discuss recent developments, including an extension of this result by Google DeepMind.

Mon, 20 May 2024
16:00
L2

Inhomogeneous multiplicative diophantine approximation

Kate Thomas
(University of Oxford)
Abstract

Introducing an inhomogeneous shift allows for generalisations of many multiplicative results in diophantine approximation. In this talk, we discuss an inhomogeneous version of Gallagher's theorem, established by Chow and Technau, which describes the rates for which we can approximate a typical product of fractional parts. We will sketch the methods used to prove an earlier version of this result due to Chow, using continued fraction expansions and geometry of numbers to analyse the structure of Bohr sets and bound sums of reciprocals of fractional parts.

Mon, 22 Apr 2024
16:00
L2

On Unique Sums in Abelian Groups

Benjamin Bedert
(University of Oxford)
Abstract

In this talk, we will study the problem in additive combinatorics of determining for a finite Abelian group $G$ the size of its smallest subset $A\subset G$ that has no unique sum, meaning that for every two $a_1,a_2\in A$ we can write $a_1+a_2=a’_1+a’_2$ for different $a’_1,a’_2\in A$. We begin by using classical rectification methods to obtain the previous best lower bounds of the form $|A|\gg \log p(G)$, which stood for 50 years. Our main aim is to outline the proof of a recent improvement and discuss some of its key notions such as additive dimension and the density increment method. This talk is based on Bedert, B. On Unique Sums in Abelian Groups. Combinatorica (2023).

Subscribe to L2