Thu, 17 Oct 2013

16:45 - 17:45
L2

Coxeter groups, path algebras and preprojective algebras

Idun Reiten
(NTNU Trondheim)
Abstract

To a finite connected acyclic quiver Q there is associated a path algebra kQ, for an algebraically closed field k, a Coxeter group W and a preprojective algebra. We discuss a bijection between elements of the Coxeter group W and the cofinite quotient closed subcategories of mod kQ, obtained by using the preprojective algebra. This is taken from a paper with Oppermann and Thomas. We also include a related result by Mizuno in the case when Q is Dynkin.

Thu, 17 Oct 2013

15:00 - 16:00
L2

The root posets (and the hereditary abelian categories of Dynkin type)

Claus Ringel
(Bielefeld University)
Abstract

Given a root system, the choice of a root basis divides the set of roots into the positive and the negative ones, it also yields an ordering on the set of positive roots. The set of positive roots with respect to this ordering is called a root poset. The root posets have attracted a lot of interest in the last years. The set of antichains (with a suitable ordering) in a root poset turns out to be a lattice, it is called lattice of (generalized) non-crossing partitions. As Ingalls and Thomas have shown, this lattice is isomorphic to the lattice of thick subcategories of a hereditary abelian category of Dynkin type. The isomorphism can be used in order to provide conceptual proofs of several intriguing counting results for non-crossing partitions.

Fri, 31 May 2013
14:00
L2

Geometric Unity

Eric Weinstein
(Oxford)
Abstract

A program for Geometric Unity is presented to argue that the seemingly baroque features of the standard model of particle physics are in fact inexorable and geometrically natural when generalizations of the Yang-Mills and Dirac theories are unified with one of general relativity.

Tue, 28 May 2013
17:00
L2

Commensurating actions and irreducible lattices

Yves Cornulier
(Orsay)
Abstract

We will first recall the known notion of commensurating actions

and its link to actions on CAT(0) cube complexes. We define a

group to have Property FW if every isometric action on a CAT(0)

cube complex has a fixed point. We conjecture that every

irreducible lattice in a semisimple Lie group of higher rank has

Property FW, and will give some instances beyond the trivial

case of Kazhdan groups.

Tue, 21 May 2013
17:00
L2

Spectral presheaves as generalised (Gelfand) spectra

Anreas Doering
(Oxford)
Abstract

The spectral presheaf of a nonabelian von Neumann algebra or C*-algebra

was introduced as a generalised phase space for a quantum system in the

so-called topos approach to quantum theory. Here, it will be shown that

the spectral presheaf has many features of a spectrum of a

noncommutative operator algebra (and that it can be defined for other

classes of algebras as well). The main idea is that the spectrum of a

nonabelian algebra may not be a set, but a presheaf or sheaf over the

base category of abelian subalgebras. In general, the spectral presheaf

has no points, i.e., no global sections. I will show that there is a

contravariant functor from unital C*-algebras to their spectral

presheaves, and that a C*-algebra is determined up to Jordan

*-isomorphisms by its spectral presheaf in many cases. Moreover, time

evolution of a quantum system can be described in terms of flows on the

spectral presheaf, and commutators show up in a natural way. I will

indicate how combining the Jordan and Lie algebra structures may lead to

a full reconstruction of nonabelian C*- or von Neumann algebra from its

spectral presheaf.

Subscribe to L2