Wed, 12 May 2010
17:00
L2

The extensive correspondence of John Wallis (1616–1703)

Philip Beeley
Abstract

What do historians of mathematics do? What sort of questions do they ask? What kinds of sources do they use? This series of four informal lectures will demonstrate some of the research on history of mathematics currently being done in Oxford. The subjects range from the late Renaissance mathematician Thomas Harriot (who studied at Oriel in 1577) to the varied and rapidly developing mathematics of the seventeenth century (as seen through the eyes of Savilian Professor John Wallis, and others) to the emergence of a new kind of algebra in Paris around 1830 in the work of the twenty-year old Évariste Galois.

Each lecture will last about 40 minutes, leaving time for questions and discussion. No previous knowledge is required: the lectures are open to anyone from the department or elsewhere, from undergraduates upwards.

Wed, 05 May 2010
17:00
L2

The life, work, and reputation of Thomas Harriot (1560–1621)

Jackie Stedall
(Oxford)
Abstract

What do historians of mathematics do? What sort of questions do they ask? What kinds of sources do they use? This series of four informal lectures will demonstrate some of the research on history of mathematics currently being done in Oxford. The subjects range from the late Renaissance mathematician Thomas Harriot (who studied at Oriel in 1577) to the varied and rapidly developing mathematics of the seventeenth century (as seen through the eyes of Savilian Professor John Wallis, and others) to the emergence of a new kind of algebra in Paris around 1830 in the work of the twenty-year old Évariste Galois.

Each lecture will last about 40 minutes, leaving time for questions and discussion. No previous knowledge is required: the lectures are open to anyone from the department or elsewhere, from undergraduates upwards.

Tue, 01 Jun 2010

14:00 - 15:00
L2

(HoRSe seminar) Motivic sheaves over excellent schemes

Denis-Charles Cisinski
(Paris 13)
Abstract

Starting from Morel and Voevodsky's stable homotopy theory of schemes, one defines, for each noetherian scheme of finite dimension $X$, the triangulated category $DM(X)$ of motives over $X$ (with rational coefficients). These categories satisfy all the the expected functorialities (Grothendieck's six operations), from

which one deduces that $DM$ also satisfies cohomological proper

descent. Together with Gabber's weak local uniformisation theorem,

this allows to prove other expected properties (e.g. finiteness

theorems, duality theorems), at least for motivic sheaves over

excellent schemes.

Tue, 15 Jun 2010

17:00 - 18:00
L2

Bilinear Forms and Differential Forms under Field Extensions

Detlev Hoffmann
(Nottingham)
Abstract

An important problem in algebra is the study of algebraic objects

defined over fields and how they behave under field extensions,

for example the Brauer group of a field, Galois cohomology groups

over fields, Milnor K-theory of a field, or the Witt ring of bilinear

forms over

a field. Of particular interest is the determination

of the kernel of the restriction map when passing to a field extension.

We will give an overview over some known results concerning the

kernel of the restriction map from the Witt ring of a field to the

Witt ring of an extension field. Over fields of characteristic

not two, general results are rather sparse. In characteristic two,

we have a much more complete picture. In this talk, I will

explain the full solution to this problem for extensions that are

given by function fields of hypersurfaces over fields of

characteristic two. An important tool is the study of the

behaviour of differential forms over fields of positive

characteristic under field extensions. The result for

Witt rings in characteristic two then follows by applying earlier

results by Kato, Aravire-Baeza, and Laghribi. This is joint

work with Andrew Dolphin.

Fri, 11 Jun 2010
16:30
L2

Tanagawa Numbers via Nonabelian Poincare Duality

Professor Jacob Lurie
(Harvard University)
Abstract

Let L be a positive definite lattice. There are only finitely many positive definite lattices

L' which are isomorphic to L modulo N for every N > 0: in fact, there is a formula for the number of such lattices, called the Siegel mass formula. In this talk, I'll review the Siegel mass formula and how it can be deduced from a conjecture of Weil on volumes of adelic points of algebraic groups. This conjecture was proven for number fields by Kottwitz, building on earlier work of Langlands and Lai. I will conclude by sketching joint work (in progress) with Dennis Gaitsgory, which uses topological ideas to attack Weil's conjecture in the case of function fields.

Fri, 14 May 2010
16:30
L2

Convergence of renormalization

Professor Artur Avila
(IMPA)
Abstract

Since the work of Feigenbaum and Coullet-Tresser on universality in the period doubling bifurcation, it is been understood that crucial features of unimodal (one-dimensional) dynamics depend on the behavior of a renormalization (and infinite dimensional) dynamical system. While the initial analysis of renormalization was mostly focused on the proof of existence of hyperbolic fixed points, Sullivan was the first to address more global aspects, starting a program to prove that the renormalization operator has a uniformly hyperbolic (hence chaotic) attractor. Key to this program is the proof of exponential convergence of renormalization along suitable ``deformation classes'' of the complexified dynamical system. Subsequent works of McMullen and Lyubich have addressed many important cases, mostly by showing that some fine geometric characteristics of the complex dynamics imply exponential convergence.

We will describe recent work (joint with Lyubich) which moves the focus to the abstract analysis of holomorphic iteration in deformation spaces. It shows that exponential convergence does follow from rougher aspects of the complex dynamics (corresponding to precompactness features of the renormalization dynamics), which enables us to conclude exponential convergence in all cases.

Tue, 27 Apr 2010

17:00 - 18:00
L2

Hopf-Galois extensions and an exact sequence for H-Picard groups

Andrei Marcus
(Cluj)
Abstract

The topic of this talk is the representation theory of Hopf-Galois extensions. We consider the following questions.

Let H be a Hopf algebra, and A, B right H-comodule algebras. Assume that A and B are faithfully flat H-Galois extensions.

1. If A and B are Morita equivalent, does it follow that the subalgebras A^coH and B^coH of H-coinvariant elements are also Morita equivalent?

2. Conversely, if A^coH and B^coH are Morita equivalent, when does it follow that A and B are Morita equivalent?

As an application, we investigate H-Morita autoequivalences of the H-Galois extension A, introduce the concept of H-Picard group, and we establish an exact sequence linking the H-Picard group of A and

the Picard group of A^coH.(joint work with Stefaan Caenepeel)

Subscribe to L2