Wed, 08 Dec 2021

13:45 - 16:30
L2

December CDT in Mathematics of Random Systems Seminars

Lancelot Da Costa, Zheneng Xie, Professor Terry Lyons
(Imperial College London and University of Oxford)
Further Information

Please email @email for the link to view talks remotely.

1:45-2:30 Lancelot Da Costa - Adaptive agents through active inference
2:30-3:15 Zheneng Xie - Scaling Limits of Random Graphs
3:15-3:30 Break
3:30-4:30 Professor Terry Lyons - From Mathematics to Data Science and Back

Abstract

Adaptive agents through active inference: The main fields of research that are used to model and realise adaptive agents are optimal control, reinforcement learning and active inference. Active inference is a probabilistic description of adaptive agents that is relatively less known to mathematicians, as it originated from neuroscience in the last decade. This talk presents the mathematical underpinnings of active inference, starting from fundamental considerations about agents that maintain their structural integrity in the face of environmental perturbations. Through this, we derive a probability distribution over actions, that describes decision-making under uncertainty in adaptive agents . Interestingly, this distribution has an interesting information geometric structure, combining, for instance, drives for exploration and exploitation, which may yield a principled answer to the exploration-exploitation trade-off. Preserving this geometric structure enables to realise adaptive agents in practice. We illustrate their behaviour with simulation examples and empirical comparisons with reinforcement learning.

Scaling Limits of Random Graphs: The scaling limit of directed random graphs remains relatively unexplored compared to their undirected counterparts. In contrast, many real-world networks, such as links on the world wide web, financial transactions and “follows” on Twitter, are inherently directed. Previous work by Goldschmidt and Stephenson established the scaling limit for the strongly connected components (SCCs) of the Erdős -- Rényi model in the critical window when appropriately rescaled. In this talk, we present a result showing the SCCs of another class of critical random directed graphs will converge when rescaled to the same limit. Central to the proof is an exploration of the directed graph and subsequent encodings of the exploration as real valued random processes. We aim to present this exploration algorithm and other key components of the proof.

From Mathematics to Data Science and Back: We give an overview of the interaction between rough path theory and data science at the current time.
 

 

Mon, 22 Nov 2021
13:00
L2

M-theory, enumerative geometry, and representation theory of affine Lie algebras

Dylan Butson
(Oxford University)
Further Information

Note unusual time (1pm) and room (L2)

Abstract

 I will review some well-established relationships between four manifolds and vertex algebras that can be deduced from studying the M5-brane worldvolume theory, and outline some of the corresponding results in mathematics which have been understood so far. I will then describe a proposal of Gaiotto-Rapcak to generalize these ideas to the setting of multiple M5 branes wrapping divisors in toric Calabi-Yau threefolds, and explain work in progress on understanding the mathematical implications of this proposal as a complex network of relationships between the enumerative geometry of sheaves on threefolds and the representation theory of affine Lie algebras.

Mon, 08 Nov 2021
13:00
L2

TBA

Matteo Sacchi
(Oxford)
Further Information

NOTE UNUSUAL TIME: 1pm

Abstract
 In this talk I will discuss an algorithm to piecewise dualise linear quivers into their mirror duals. This applies to the 3d N=4 version of mirror symmetry as well as its recently introduced 4d counterpart, which I will review. The algorithm uses two basic duality moves, which mimic the local S-duality of the 5-branes in the brane set-up of the 3d theories, and the properties of the S-wall. The S-wall is known to correspond to the N=4 T[SU(N)] theory in 3d and I will argue that its 4d avatar corresponds to an N=1 theory called E[USp(2N)], which flows to T[SU(N)] in a suitable 3d limit. All the basic duality moves and S-wall properties needed in the algorithm are derived in terms of some more fundamental Seiberg-like duality, which is the Intriligator--Pouliot duality in 4d and the Aharony duality in 3d.

 

Fri, 15 Oct 2021

14:00 - 15:00
L2

Modeling and topological data analysis for biological ring channels

Prof Veronica Ciocanel
(Duke University)
Abstract

Actin filaments are polymers that interact with myosin motor
proteins and play important roles in cell motility, shape, and
development. Depending on its function, this dynamic network of
interacting proteins reshapes and organizes in a variety of structures,
including bundles, clusters, and contractile rings. Motivated by
observations from the reproductive system of the roundworm C. elegans,
we use an agent-based modeling framework to simulate interactions
between actin filaments and myosin motor proteins inside cells. We also
develop tools based on topological data analysis to understand
time-series data extracted from these filament network interactions. We
use these tools to compare the filament organization resulting from
myosin motors with different properties. We have also recently studied
how myosin motor regulation may regulate actin network architectures
during cell cycle progression. This work also raises questions about how
to assess the significance of topological features in common topological
summary visualizations.
 

Fri, 13 Mar 2020

16:00 - 17:00
L2

North Meets South

Thomas Oliver and Ebrahim Patel
Abstract


Speaker: Thomas Oliver

Title: Hyperbolic circles and non-trivial zeros

Abstract: L-functions can often be considered as generating series of arithmetic information. Their non-trivial zeros are the subject of many famous conjectures, which offer countless applications to number theory. Using simple geometric observations in the hyperbolic plane, we will study the relationship between the zeros of L-functions and their characterisation amongst more general Dirichlet series.
 

Speaker: Ebrahim Patel

Title: From trains to brains: Adventures in Tropical Mathematics.

Abstract: Tropical mathematics uses the max and plus operator to linearise discrete nonlinear systems; I will present its popular application to solve scheduling problems such as railway timetabling. Adding the min operator generalises the system to allow the modelling of processes on networks. Thus, I propose applications such as disease and rumour spreading as well as neuron firing behaviour.


 

Fri, 28 Feb 2020

16:00 - 17:00
L2

North Meets South

Elena Gal and Carolina Urzua-Torres
Abstract

Elena Gal
Categorification, Quantum groups and TQFTs

Quantum groups are mathematical objects that encode (via their "category of representations”) certain symmetries which have been found in the last several dozens of years to be connected to several areas of mathematics and physics. One famous application uses representation theory of quantum groups to construct invariants of 3-dimensional manifolds. To extend this theory to higher dimensions we need to “categorify" quantum groups - in essence to find a richer structure of symmetries. I will explain how one can approach such problem.

 

Carolina Urzua-Torres
Why you should not do boundary element methods, so I can have all the fun.

Boundary integral equations offer an attractive alternative to solve a wide range of physical phenomena, like scattering problems in unbounded domains. In this talk I will give a simple introduction to boundary integral equations arising from PDEs, and their discretization via Galerkin BEM. I will discuss some nice mathematical features of BEM, together with their computational pros and cons. I will illustrate these points with some applications and recent research developments.
 

Tue, 10 Mar 2020
14:30
L2

Random smoothies: C-infinity but nowhere analytic

Nick Trefethen
Abstract

Since Weierstrass it has been known that there are functions that are continuous but nowhere differentiable.  A beautiful example (with probability 1) is any Brownian path.  Brownian paths can be constructed either in space, via Brownian bridge, or in Fourier space, via random Fourier series.

What about functions, which we call "smoothies", that are $C^\infty$ but nowhere analytic?  This case is less familiar but analogous, and again one can do the construction either in space or Fourier space.  We present the ideas and illustrate them with the new Chebfun $\tt{smoothie}$ command.  In the complex plane, the same idea gives functions analytic in the open unit disk and $C^\infty$ on the unit circle, which is a natural boundary.

Tue, 10 Mar 2020
14:00
L2

Motion correction methods for undersampled 3D imaging

Joseph Field
(Oxford)
Abstract

Reconstruction of 3D images from a set of 2D X-ray projections is a standard inverse problem, particularly in medical imaging. Improvements in imaging technologies have enabled the development of a flat-panel X-ray source, comprised of an array of low-power emitters that are fired in quick succession. During a complete firing sequence, there may be shifts in the patient’s resting position which ultimately create artifacts in the final reconstruction. We present a method for correcting images with respect to unknown body motion, focusing on the case of simple rigid body motion. Image reconstructions are obtained by solving a sparse linear inverse problem, with respect to not only the underlying body but also the unknown velocity. Results find that reconstructions of a moving body can be much better than those obtained by measuring a stationary body, as long as the underlying motion is well approximated.

Subscribe to L2