Mon, 19 Jan 2026

15:30 - 16:30
L3

TBA

Andreas Kyprianou
(Dept of Mathematics University of Warwick)
Abstract

TBA

Fri, 07 Nov 2025
12:00
L3

Hypergeometric Methods in Quantum Field Theory

Sven Stavinski
(University of Bonn)
Abstract

In this talk I will give a gentle introduction to some aspects of the theory of hypergeometric functions as a natural language for addressing various integrals appearing in quantum field theory (QFT). In particular I will focus on the so-called intersection pairings as well as the differential equations satisfied by the integrals, and I will show how these aspects of the mathematical theory can find a natural interpretation in concrete QFT applications. I will mostly focus on Feynman integrals as paradigmatic example, where the language will shed new light on our most powerful method for computing Feynman integrals as well as their non-local symmetries. I will then give an outlook how these methods could allow us to also learn about integrals appearing in other places in field and string theory, such as Coulomb branch amplitudes, celestial holography and AdS (supergravity and string) amplitudes.

Fri, 24 Oct 2025
11:00
L3

Higher-Form Anomalies on Lattice

Ryohei Kobayashi
(IAS Princeton)
Abstract
Higher-form symmetry in a tensor product Hilbert space is always emergent: the symmetry generators become genuinely topological only when the Gauss law is energetically enforced at low energies. In this talk, I explain a general method for defining the 't Hooft anomaly of higher-form symmetries in lattice models built on a tensor product Hilbert space. For instance, this allows us to define an index valued in $H^4(B^2G, U(1))$ characterizing the ’t Hooft anomaly of 1-form symmetry (2+1)D, for given finite depth circuits generating the symmetry. I also outline a criteria for “onsiteability” of higher-form symmetry based on an ongoing work with collaborators.


 

Mon, 17 Nov 2025

15:30 - 16:30
L3

Stochastic Graphon Games with Interventions

Eyal NEUMANN
(Imperial College London)
Abstract

We consider targeted intervention problems in dynamic network and graphon games. First, we study a general dynamic network game in which players interact over a graph and seek to maximize their heterogeneous, concave goal functionals. We establish the existence and uniqueness of a Nash equilibrium in both the finite-player network game and the corresponding infinite-player graphon game, and prove its convergence as the number of players tends to infinity. We then introduce a central planner who implements a dynamic targeted intervention. Given a fixed budget, the central planner maximizes the average welfare at equilibrium by perturbing the players' heterogeneous goal functionals. Using a novel fixed-point argument, we prove the existence and uniqueness of an optimal intervention in the graphon setting, and show that it achieves near-optimal performance in large finite networks. Finally, we study the special case of linear-quadratic goal functionals and derive semi-explicit solutions for the optimal intervention.

 

This is a joint work with Sturmius Tuschmann.  


 

Thu, 27 Nov 2025

12:00 - 13:00
L3

OCIAM TBC

Karel Devriendt & Fiyanshu Kaka
((Mathematical Institute University of Oxford))
Thu, 06 Nov 2025
17:00
L3

Composition of transseries, monotonicity, and analyticity

Vincenzo Mantova
(University of Leeds)
Abstract
Transseries generalise power series by including exponential and logarithmic terms, if not more, and can be interpreted as germs of a non-standard Hardy field by composition (for instance, on surreal numbers). I'll discuss a few results that must 'obviously' be true, yet their proofs are not obvious: that composition is monotonic in both arguments, once claimed but not proved by Edgar for LE-series, that it satisfies a suitable Taylor theorem and that in fact composition is 'analytic with large radius of convergence' (joint with V. Bagayoko), something which appeared before in various special forms, but not in full generality. I'll show how monotonicity and Taylor can be used to prove some fairly general normalisation results for hyperbolic transseries (joint with D. Peran, J.-P. Rolin, T. Servi).
Thu, 04 Dec 2025
17:00
L3

Sharply k-homogeneous actions on Fraïssé structures

Robert Sullivan
(Charles University, Prague)
Abstract
Given an action of a group G on a relational Fraïssé structure M, we call this action *sharply k-homogeneous* if, for each isomorphism f : A -> B of substructures of M of size k, there is exactly one element of G whose action extends f. This generalises the well-known notion of a sharply k-transitive action on a set, and was previously investigated by Cameron, Macpherson and Cherlin. I will discuss recent results with J. de la Nuez González which show that a wide variety of Fraïssé structures admit sharply k-homogeneous actions for k ≤ 3 by finitely generated virtually free groups. Our results also specialise to the case of sets, giving the first examples of finitely presented non-split infinite groups with sharply 2-transitive/sharply 3-transitive actions.
Tue, 21 Oct 2025

14:00 - 15:00
L3

Optimal control of the Dyson equation and large deviations for Hermitian random matrices

Prof Panagiotis E. Souganidis
(University of Chicago)
Abstract

Using novel arguments as well as techniques developed over the last  twenty years to study mean field games, in this paper (i) we investigate the optimal control of the Dyson equation, which is the mean field equation for the so-called Dyson Brownian motion, that is, the stochastic particle system satisfied by the eigenvalues of large random matrices, (ii) we establish the well-posedness of the resulting infinite dimensional Hamilton-Jacobi equation, 
(iii) we provide a complete and direct proof for the large deviations for the spectrum of large random matrices, and (iv) we study the asymptotic behavior of the transition probabilities of the Dyson Brownian motion.  Joint work with Charles Bertucci and Pierre-Louis Lions.

Mon, 02 Feb 2026
15:30
L3

Mean field games without rational expectations

Benjamin MOLL
(LSE)
Abstract
Mean Field Game (MFG) models implicitly assume “rational expectations”, meaning that the heterogeneous agents being modeled correctly know all relevant transition probabilities for the complex system they inhabit. When there is common noise, it becomes necessary to solve the “Master equation” (a.k.a. “Monster equation”), a Hamilton-JacobiBellman equation in which the infinite-dimensional density of agents is a state variable. The rational expectations assumption and the implication that agents solve Master equations is unrealistic in many applications. We show how to instead formulate MFGs with non-rational expectations. Departing from rational expectations is particularly relevant in “MFGs with a low-dimensional coupling”, i.e. MFGs in which agents’ running reward function depends on the density only through low-dimensional functionals of this density. This happens, for example, in most macroeconomics MFGs in which these lowdimensional functionals have the interpretation of “equilibrium prices.” In MFGs with a low-dimensional coupling, departing from rational expectations allows for completely sidestepping the Master equation and for instead solving much simpler finite-dimensional HJB equations. We introduce an adaptive learning model as a particular example of nonrational expectations and discuss its properties.
Tue, 04 Nov 2025
15:30
L3

A Century of Graph Theory

Robin Wilson
(Open University)
Abstract

This illustrated historical talk covers the period from around 1890, when graph theory was still mainly a collection of isolated results, to the 1990s, when it had become part of mainstream mathematics. Among many other topics, it includes material on graph and map colouring, factorisation, trees, graph structure, and graph algorithms. 

 

 

Subscribe to L3