Loop soups in 2 + epsilon dimensions
Abstract
The talk will be about a natural percolation model built from the so-called Brownian loop soup. We will give sense to studying its phase transition in dimension d = 2 + epsilon, with epsilon varying in [0,1], and discuss how to perform a rigorous „epsilon-expansion“ in this context. Our methods give access to a whole family of universality classes, and elucidate the behaviour of critical exponents etc. near the (lower-)critical dimension, which for this model is d=2.
Based on joint work with Wen Zhang.