Thu, 02 May 2024

12:00 - 13:00
L3

Path integral formulation of stochastic processes

Steve Fitzgerald
(University of Leeds)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

Traditionally, stochastic processes are modelled one of two ways: a continuum Fokker-Planck approach, where a PDE is solved to determine the time evolution of the probability density, or a Langevin approach, where the SDE describing the system is sampled, and multiple simulations are used to collect statistics. There is also a third way: the functional or path integral. Originally developed by Wiener in the 1920s to model Brownian motion, path integrals were famously applied to quantum mechanics by Feynman in the 1950s. However, they also have much to offer classical stochastic processes (and statistical physics).  

In this talk I will introduce the formalism at a physicist’s level of rigour, and focus on determining the dominant contribution to the path integral when the noise is weak. There exists a remarkable correspondence between the most-probable stochastic paths and Hamiltonian dynamics in an effective potential [1,2,3]. I will then discuss some applications, including reaction pathways conditioned on finite time [2]. We demonstrate that the most probable pathway at a finite time may be very different from the usual minimum energy path used to calculate the average reaction rate. If time permits, I will also discuss the extremely nonlinear crystal dislocation response to applied stress [4].  

[1] Ge, Hao, and Hong Qian. Int. J. Mod. Phys. B 26.24 1230012 (2012)     

[2] Fitzgerald, Steve, et al. J. Chem. Phys. 158.12 (2023).

[3] Honour, Tom and Fitzgerald, Steve. in press J. Phys. A (2024)

[4] Fitzgerald, Steve. Sci. Rep. 6 (1) 39708 (2016)

 

Thu, 16 May 2024

12:00 - 13:00
L3

Modelling liquid infiltration in a porous medium: perils of oversimplification

​Doireann O'Kiely
(University of Limerick)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

Mathematical modelling can support decontamination processes in a variety of ways.  In this talk, we focus on the contamination step: understanding how much of a chemical spill has seeped into the Earth or a building material, and how far it has travelled, are essential for making good decisions about how to clean it up.  

We consider an infiltration problem in which a chemical is poured on an initially unsaturated porous medium, and seeps into it via capillary action. Capillarity-driven flow through partially-saturated porous media is often modelled using Richards’ equation, which is a simplification of the Buckingham-Darcy equation in the limit where the infiltrating phase is much more viscous than the receding phase.  In this talk, I will explore the limitations of Richards equation, and discuss some scenarios in which predictions for small-but-finite viscosity ratios are very different to the Richards simplification.

Mon, 03 Jun 2024
15:30
L3

TBC

Prof Stephan Eckstein
(University of Tübingen)
Fri, 07 Jun 2024

14:00 - 15:00
L3

Modeling the electromechanics of aerial electroreception

Dr Isaac Vikram Chenchiah
(School of Mathematics University of Bristol)
Abstract
Aerial electroreception is the ability of some arthropods (e.g., bees) to detect electric fields in the environment. I present an overview of our attempts to model the electromechanics of this recently discovered phenomenon and how it might contribute to the sensory biology of arthropods. This is joint work with Daniel Robert and Ryan Palmer.


 

Fri, 31 May 2024

14:00 - 15:00
L3

Cytoneme-mediated morphogenesis

Prof Paul Bressloff
(Dept of Mathematics Imperial College London)
Abstract

Morphogen protein gradients play an essential role in the spatial regulation of patterning during embryonic development.  The most commonly accepted mechanism of protein gradient formation involves the diffusion and degradation of morphogens from a localized source. Recently, an alternative mechanism has been proposed, which is based on cell-to-cell transport via thin, actin-rich cellular extensions known as cytonemes. It has been hypothesized that cytonemes find their targets via a random search process based on alternating periods of retraction and growth, perhaps mediated by some chemoattractant. This is an actin-based analog of the search-and-capture model of microtubules of the mitotic spindle searching for cytochrome binding sites (kinetochores) prior to separation of cytochrome pairs. In this talk, we introduce a search-and-capture model of cytoneme-based morphogenesis, in which nucleating cytonemes from a source cell dynamically grow and shrink until making contact with a target cell and delivering a burst of morphogen. We model the latter as a one-dimensional search process with stochastic resetting, finite returns times and refractory periods. We use a renewal method to calculate the splitting probabilities and conditional mean first passage times (MFPTs) for the cytoneme to be captured by a given target cell. We show how multiple rounds of search-and-capture, morphogen delivery, cytoneme retraction and nucleation events lead to the formation of a morphogen gradient. We proceed by formulating the morphogen bursting model as a queuing process, analogous to the study of translational bursting in gene networks. We end by briefly discussing current work on a model of cytoneme-mediated within-host viral spread.

Fri, 17 May 2024

14:00 - 15:00
L3

Some consequences of phenotypic heterogeneity in living active matter

Dr Philip Pearce
(Dept of Mathematics UCL)
Abstract

In this talk I will discuss how phenotypic heterogeneity affects emergent pattern formation in living active matter with chemical communication between cells. In doing so, I will explore how the emergent dynamics of multicellular communities are qualitatively different in comparison to the dynamics of isolated or non-interacting cells. I will focus on two specific projects. First, I will show how genetic regulation of chemical communication affects motility-induced phase separation in cell populations. Second, I will demonstrate how chemotaxis along self-generated signal gradients affects cell populations undergoing 3D morphogenesis.

Fri, 10 May 2024

14:00 - 15:00
L3

The determining role of cell adhesions for force transmission, mechanical activity and stiffness sensing in cells and tissues

Dr Carina Dunlop
(Dept of Mathematics University of Surrey)
Abstract

The role of tissue stiffness in controlling cell behaviours ranging from proliferation to signalling and activation is by now well accepted. A key focus of experimental studies into mechanotransduction are focal adhesions, localised patches of strong adhesion, where cell signalling has been established to occur. However, these adhesion sites themselves alter the mechanical equilibrium of the system determining the force balance and work done. To explore this I have developed an active matter continuum description of cellular contractility and will discuss recent results on the specific role of spatial positioning of adhesions in mechanotransduction. I show using energy arguments why the experimentally observed arrangements of focal adhesions develop and the implications this has for stiffness sensing and cellular contractility control. I will also show how adhesions play distinct roles in single cells and tissue layers respectively drawing on recent experimental work with Dr JR Davis (Manchester University) and Dr Nic Tapon (Crick Institute) with applications to epithelial layers and organoids.

Subscribe to L3