Stationary holographic plasma quenches and numerical methods for non-Killing horizons
Abstract
Torsion-free generalized connections and heterotic supergravity
Abstract
Hyperconifold Singularities and Transitions
Abstract
16:00
Separation properties and restrictions on the cardinality of topological spaces
Definable henselian valuations
Abstract
Non-trivial henselian valuations are often so closely related to the arithmetic of the underlying field that they are encoded in it, i.e., that their valuation ring is first-order definable in the language of rings. In this talk, we will give a complete classification of all henselian valued fields of residue characteristic 0 that allow a (0-)definable henselian valuation. This requires new tools from the model theory of ordered abelian groups (joint work with Franziska Jahnke).
Externally definable sets in real closed fields
Abstract
An externally definable set of a first order structure $M$ is a set of the form $X\cap M^n$ for a set $X$ that is parametrically definable in some elementary extension of $M$. By a theorem of Shelah, these sets form again a first order structure if $M$ is NIP. If $M$ is a real closed field, externally definable sets can be described as some sort of limit sets (to be explained in the talk), in the best case as Hausdorff limits of definable families. It is conjectured that the Shelah structure on a real closed field is generated by expanding the field with convex subsets of the line. This is known to be true in the archimedean case by van den Dries (generalised by Marker and Steinhorn). I will report on recent progress around this question, mainly its confirmation on real closed fields that are close to being maximally valued with archimedean residue field. The main tool is an algebraic characterisation of definable types in real closed valued fields. I also intend to give counterexamples to a localized version of the conjecture. This is joint work with Francoise Delon.
Digital morphogenesis via Schelling segregation
Abstract
The Schelling segregation model has been extensively studied, by researchers in fields as diverse as economics, physics and computer science. While the explicit concern when the model was first introduced back in 1969, was to model the kind for racial segregation observed in large American cities, the model is sufficiently abstract to apply to almost situation in which agents or nodes arrange themselves geographically according to a preference not to be of a minority type within their own neighbourhhood. Kirman and Vinkovik have established, for example, that Schelling's model is a finite difference version of a differential equation describing interparticle forces (and applied in the modelling of cluster formation). Despite the large literature relating to the model, however, it has largely resisted rigorous analysis -- it has not been possible to prove the segregation behaviour easily observed when running simulations. For the first time we have now been able to rigorously analyse the model, and have also established some rather surprising threshold behaviour.
This talk will require no specialist background knowledge.