Tue, 19 Feb 2013

14:30 - 15:30
L3

Bootstrap percolation on infinite trees

Karen Johannson
(Bristol)
Abstract

While usual percolation concerns the study of the connected components of

random subgraphs of an infinite graph, bootstrap percolation is a type of

cellular automaton, acting on the vertices of a graph which are in one of

two states: `healthy' or `infected'. For any positive integer $r$, the

$r$-neighbour bootstrap process is the following update rule for the

states of vertices: infected vertices remain infected forever and each

healthy vertex with at least $r$ infected neighbours becomes itself

infected. These updates occur simultaneously and are repeated at discrete

time intervals. Percolation is said to occur if all vertices are

eventually infected.

As it is often difficult to determine precisely which configurations of

initially infected vertices percolate, one often considers a random case,

with each vertex infected independently with a fixed probability $p$. For

an infinite graph, of interest are the values of $p$ for which the

probability of percolation is positive. I will give some of the history

of this problem for regular trees and present some new results for

bootstrap percolation on certain classes of randomly generated trees:

Galton--Watson trees.

Thu, 07 Mar 2013

16:00 - 17:00
L3

Conditional bounds for the Riemann zeta-function via Fourier analysis.

Emanuel Carneiro
(Brazil)
Abstract

In this talk I will present the best up-to-date bounds for the argument of the Riemann zeta-function on the critical line, assuming the Riemann hypothesis. The method applies to other objects related to the Riemann zeta-function and uses certain special families of functions of exponential type. This is a joint work with Vorrapan Chandee (Montreal) and Micah Milinovich (Mississipi).

Tue, 12 Feb 2013

14:30 - 15:30
L3

From monotone arithmetic progressions to bounded additive complexity in infinite words

Veselin Jungic
(Simon Fraser University)
Abstract

I will describe how a search for the answer to an old question about the existence of monotone arithmetic progressions in permutations of positive integers led to the study of infinite words with bounded additive complexity. The additive complexity of a word on a finite subset of integers is defined as the function that, for a positive integer $n$, counts the maximum number of factors of length $n$, no two of which have the same sum.

Subscribe to L3