Mon, 18 Feb 2013

12:00 - 13:00
L3

A magic square from Yang-Mills squared

Mike Duff
(Imperial College)
Abstract
I will give a division algebra R,C,H,O description of D = 3 Yang-Mills with N = 1,2,4,8 and hence, by tensoring left and right multiplets, a magic square RR, CR, CC, HR, HC, HH, OR, OC, OH, OO description of D = 3 supergravity with N = 2, 3, 4, 5, 6, 8, 9, 10, 12, 16.
Mon, 11 Feb 2013

12:00 - 13:00
L3

On sequestering and decoupling in stabilized string models

David Marsh
(Oxford)
Abstract
I will describe recent efforts to understand the mediation of supersymmetry breaking in stabilized compactifications of type IIB string theory. By geometrically separating the visible sector from the supersymmetry breaking effects one may hope to achieve sequestered supersymmetry breaking and much ameliorated constraints from bounds on flavor changing neutral currents. However, in this talk I will discuss how non-perturbative superpotential cross-couplings between the visible sector and the Kähler moduli may spoil sequestering and introduce a sensitivity to the global details of the compactification. As a simple example, I will describe the structure of these `de-sequestering’ operators for a class of visible sectors realized by D-branes probing an orbifold singularity, and I will discuss their importance in the KKLT and LVS moduli stabilization scenarios.
Tue, 22 Jan 2013

14:30 - 15:30
L3

Long paths and cycles in subgraphs of the cube

Eoin Long
(Queen Mary)
Abstract

Let $Q_n$ denote the graph of the $n$-dimensional cube with vertex set $\{0, 1\}^n$

in which two vertices are adjacent if they differ in exactly one coordinate.

Suppose $G$ is a subgraph of $Q_n$ with average degree at least $d$. How long a

path can we guarantee to find in $G$?

My aim in this talk is to show that $G$ must contain an exponentially long

path. In fact, if $G$ has minimum degree at least $d$ then $G$ must contain a path

of length $2^d − 1$. Note that this bound is tight, as shown by a $d$-dimensional

subcube of $Q^n$. I hope to give an overview of the proof of this result and to

discuss some generalisations.

Tue, 26 Feb 2013

14:30 - 15:30
L3

Limit method in extremal combinatorics

Oleg Pikhurko
(Warwick)
Abstract

Razborov's flag algebras provide a formal system

for operating with asymptotic inequalities between subgraph densities,

allowing to do extensive "book-keeping" by a computer. This novel use

of computers led to progress on many old problems of extremal

combinatorics. In some cases, finer structural information can be

derived from a flag algebra proof by by using the Removal Lemma or

graph limits. This talk will overview this approach.

Tue, 05 Mar 2013

14:30 - 15:30
L3

Optimal covers of random graphs with Hamilton cycles

Dan Hefetz
(Birmingham)
Abstract

We prove that if $\frac{\log^{117} n}{n} \leq p \leq 1 -

n^{-1/8}$, then asymptotically almost surely the edges of $G(n,p)$ can

be covered by $\lceil \Delta(G(n,p))/2 \rceil$ Hamilton cycles. This

is clearly best possible and improves an approximate result of Glebov,

Krivelevich and Szab\'o, which holds for $p \geq n^{-1 + \varepsilon}$.

Based on joint work with Daniela Kuhn, John Lapinskas and Deryk Osthus.

Subscribe to L3