Thu, 07 Mar 2013

14:00 - 15:00
L3

Borel- Schur algebras and resolutions of Weyl modules

Ana Paula Santana
(University of Coimbra)
Abstract

Using the Borel-Schur algebra, we construct explicit characteristic-free resolutions for Weyl modules for the general linear group. These resolutions provide an answer to the problem, posed in the 80's by A. Akin and D. A. Buchsbaum, of constructing finite explicit and universal resolutions of Weyl modules by direct sums of divided powers. Next we apply the Schur functor to these resolutions and prove a conjecture of Boltje and Hartmann on resolutions of co-Specht modules. This is joint work with I. Yudin.

Thu, 28 Feb 2013

17:00 - 18:00
L3

Rational values of certain analytic functions

Gareth Jones
(Manchester)
Abstract

Masser recently proved a bound on the number of rational points of bounded height on the graph of the zeta function restricted to the interval [2,3]. Masser's bound substantially improves on bounds obtained by Bombieri-Pila-Wilkie. I'll discuss some results obtained in joint work with Gareth Boxall in which we prove bounds only slightly weaker than Masser's for several more natural analytic functions.

Thu, 21 Feb 2013

17:00 - 18:00
L3

Multiplicity in difference geometry

Ivan Tomasic
(QMUL)
Abstract

The study of difference algebraic geometry stems from the efforts of Macintyre and Hrushovski to

count the number of solutions to difference polynomial equations over fields with powers of Frobenius.

We propose a notion of multiplicity in the context of difference algebraic schemes and prove a first principle

of preservation of multiplicity. We shall also discuss how to formulate a suitable intersection theory of difference schemes.

Thu, 07 Feb 2013

17:00 - 18:00
L3

The Outer Model Programme

Peter Holy
(Bristol)
Abstract

The Outer Model Programme investigates L-like forcing  extensions of the universe, where we say that a model of Set Theory  is L-like if it satisfies properties of Goedel's constructible universe of sets L. I will introduce the Outer Model Programme, talk  about its history, motivations, recent results and applications. I  will be presenting joint work with Sy Friedman and Philipp Luecke.

Thu, 21 Feb 2013

14:00 - 15:00
L3

Deflating characters of symmetric groups and Foulkes’ Conjecture

Rowena Paget
(University of Canterbury)
Abstract

The symmetric group S_{mn} acts naturally on the collection of set partitions of a set of size mn into n sets each of size m, and the resulting permutation character is the Foulkes character. These characters are the subject of the longstanding Foulkes Conjecture. In this talk, we define a deflation map which sends a character of the symmetric group S_{mn} to a character of S_n. The values of the images of the irreducible characters under this map are described combinatorially in a rule which generalises two well-known combinatorial rules in the representation theory of symmetric groups, the Murnaghan-Nakayama formula and Young's rule. We use this in a new algorithm for computing irreducible constituents of Foulkes characters and verify Foulkes’ Conjecture in some new cases. This is joint work with Anton Evseev (Birmingham) and Mark Wildon (Royal Holloway).

Mon, 28 Jan 2013

15:45 - 16:45
L3

Coarse median spaces

Brian Bowditch
(Warwick)
Abstract

By a "coarse median" we mean a ternary operation on a path metric space, satisfying certain conditions which generalise those of a median algebra. It can be interpreted as a kind of non-positive curvature condition, and is applicable, for example to finitely generated groups. It is a consequence of work of Behrstock and Minsky, for example, that the mapping class group of a surface satisfies this condition. We aim to give some examples, results and applications concerning this notion.

Subscribe to L3