Thu, 15 Feb 2024
16:00
L3

A New Solution to Time Inconsistent Stopping Problem

Yanzhao Yang
(Mathematical Insittute)
Further Information

Please join us for refreshments from 15:30 outside L3.

Abstract
Time inconsistency is a situation that a plan of actions to be taken in the future that is optimal for an agent according to today's preference may not be optimal for the same agent in the future according to corresponding preference.
In this talk, we study a continuous dynamic time inconsistent stopping problem with a flow of preferences which can be in general form. We will define a solution to the problem by the rationality of the agent, and compare it with other solutions appeared in literature. Some examples with respect to specific preferences will be shown as a part of our analysis.
 
This is a joint work with Hanqing Jin.
Thu, 07 Mar 2024

12:00 - 13:00
L3

Short- and late-time behaviours of Fokker-Planck equations for heterogeneous diffusions

Ralf Blossey
(CNRS & University of Lille, France)
Abstract

The Fokker-Planck equation is one of the major tools of statistical physics in the description of stochastic processes, with numerous applications in physics, chemistry and biology. In the case of heterogeneous diffusions, the formulation of the equation depends on the choice of the discretization of the stochastic integral in the underlying Langevin-equation due to the multiplicative noise. In the Fokker-Planck equation, the choice of discretization then enters as a parameter in the definition of drift and diffusion terms. I show how both short- and long-time limits are affected by this choice. In the long-time limit, the existence of normalizable probability distribution functions is not always guaranteed which can be remedied by invoking elements of infinite ergodic theory. 

[1] S. Giordano, F. Cleri, R. Blossey, Phys Rev E 107, 044111 (2023)

[2] T. Dupont, S. Giordano, F. Cleri, R. Blossey, arXiv:2401.01765 (2024)

Fri, 26 Jan 2024
12:00
L3

Geometric action for extended Bondi-Metzner-Sachs group in four dimensions

Romain Ruzziconi
(Oxford)
Abstract

This will be an informal discussion seminar based on https://arxiv.org/abs/2211.07592:

The constrained Hamiltonian analysis of geometric actions is worked out before applying the construction to the extended Bondi-Metzner-Sachs group in four dimensions. For any Hamiltonian associated with an extended BMS4 generator, this action provides a field theory in two plus one spacetime dimensions whose Poisson bracket algebra of Noether charges realizes the extended BMS4 Lie algebra. The Poisson structure of the model includes the classical version of the operator product expansions that have appeared in the context of celestial holography. Furthermore, the model reproduces the evolution equations of non-radiative asymptotically flat spacetimes at null infinity.

Thu, 01 Feb 2024

17:00 - 18:00
L3

The independence theorem in positive NSOP1 theories

Mark Kamsma
(Queen Mary University of London)
Abstract

Positive logic is a generalisation of full first-order logic, where negation is not built in, but can be added as desired. In joint work with Jan Dobrowolski we succesfully generalised the recent development on Kim-independence in NSOP1 theories to the positive setting. One of the important theorems in this development is the independence theorem, whose statement is very similar to the well-known statement for simple theories, and allows us to amalgamate independent types. In this talk we will have a closer look at the proof of this theorem, and what needs to be changed to make the proof work in positive logic compared to full first-order logic.

Thu, 25 Jan 2024
16:00
L3

Causal transport on path space

Rui Lim
(Mathematical Insitute, Oxford)
Further Information

Join us for refreshments from 330 outside L3.

Abstract

Causal optimal transport and the related adapted Wasserstein distance have recently been popularized as a more appropriate alternative to the classical Wasserstein distance in the context of stochastic analysis and mathematical finance. In this talk, we establish some interesting consequences of causality for transports on the space of continuous functions between the laws of stochastic differential equations.
 

We first characterize bicausal transport plans and maps between the laws of stochastic differential equations. As an application, we are able to provide necessary and sufficient conditions for bicausal transport plans to be induced by bi-causal maps. Analogous to the classical case, we show that bicausal Monge transports are dense in the set of bicausal couplings between laws of SDEs with unique strong solutions and regular coefficients.

 This is a joint work with Rama Cont.

Tue, 07 May 2024

14:00 - 14:30
L3

The Approximation of Singular Functions by Series of Non-integer Powers

Mohan Zhao
(University of Toronto)
Abstract
In this talk, we describe an algorithm for approximating functions of the form $f(x) = \langle \sigma(\mu),x^\mu \rangle$ over the interval $[0,1]$, where $\sigma(\mu)$ is some distribution supported on $[a,b]$, with $0<a<b<\infty$. Given a desired accuracy and the values of $a$ and $b$, our method determines a priori a collection of non-integer powers, so that functions of this form are approximated by expansions in these powers, and a set of collocation points, such that the expansion coefficients can be found by collocating a given function at these points. Our method has a small uniform approximation error which is proportional to the desired accuracy multiplied by some small constants, and the number of singular powers and collocation points grows logarithmically with the desired accuracy. This method has applications to the solution of partial differential equations on domains with corners.
Thu, 01 Feb 2024
16:00
L3

Some mathematical results on generative diffusion models

Dr Renyuan Xu
(University of Southern California)
Further Information

Join us for refreshments from 330 outside L3.

Abstract

Diffusion models, which transform noise into new data instances by reversing a Markov diffusion process, have become a cornerstone in modern generative models. A key component of these models is to learn the score function through score matching. While the practical power of diffusion models has now been widely recognized, the theoretical developments remain far from mature. Notably, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. In this talk, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models and the accuracy of score estimation. Our analysis covers both the optimization and the generalization aspects of the learning procedure, which also builds a novel connection to supervised learning and neural tangent kernels.

This is based on joint work with Yinbin Han and Meisam Razaviyayn (USC).

Thu, 18 Jan 2024
16:00
L3

Multireference Alignment for Lead-Lag Detection in Multivariate Time Series and Equity Trading

Danni Shi
(Oxford Man Institute [OMI])
Further Information

Join us for refreshments from 330 outside L3.

Abstract

We introduce a methodology based on Multireference Alignment (MRA) for lead-lag detection in multivariate time series, and demonstrate its applicability in developing trading strategies. Specifically designed for low signal-to-noise ratio (SNR) scenarios, our approach estimates denoised latent signals from a set of time series. We also investigate the impact of clustering the time series on the recovery of latent signals. We demonstrate that our lead-lag detection module outperforms commonly employed cross-correlation-based methods. Furthermore, we devise a cross-sectional trading strategy that capitalizes on the lead-lag relationships uncovered by our approach and attains significant economic benefits. Promising backtesting results on daily equity returns illustrate the potential of our method in quantitative finance and suggest avenues for future research.

Fri, 19 Jan 2024
12:00
L3

Topological Recursion: Introduction, Overview and Applications

Alex Hock
(Oxford)
Abstract
I will give a talk about the topological recursion (TR) of Eynard and Orantin, which generates from some initial data (the so-called the spectral curve) a family of symmetric multi-differentials on a Riemann surface. Symplectic transformations of the spectral curve play an important role and are conjectured to leave the free energies $F_g$ invariant. TR has nowadays a lot of applications ranging random matrix theory, integrable systems, intersection theory on the moduli space of complex curves $\mathcal{M}_{g,n}$, topological string theory over knot theory to free probability theory. I will highlight specific examples, such as the Airy curve (also sometimes called the Kontsevich-Witten curve) which enumerates $\psi$-class intersection numbers on $\mathcal{M}_{g,n}$, the Mirzakhani curve for computing Weil–Petersson volumes, the spectral curve of the hermitian 1-matrix model, and the topological vertex curve which derives the $B$-model correlators in topological string theory. Should time allow, I will also discuss the quantum spectral curve as a quantisation of the classical spectral curve annihilating a wave function constructed from the family of multi-differentials. 
 
 
Thu, 08 Feb 2024

12:00 - 13:00
L3

Ocean dynamics on the margin of rotational control

John R Taylor
(University of Cambridge)
Further Information

Professor Taylor's research focuses on the fluid dynamics of the ocean. He is particularly interested in ocean turbulence and mixing, ocean fronts and the surface boundary layer, and the impact of turbulence on micro-organisms. Recent work has uncovered a fascinating and poorly-understood collection of processes occurring at relatively small scales (<O(10km)) where the vertical motion is strong but stratification and the Earth's rotation are important factors. Since these motions are too small to be directly resolved by global ocean and climate models, understanding their impact on the structure and dynamics of the ocean is one of the most pressing topics in physical oceanography. Currently, he is studying the dynamics of upper ocean fronts, the turbulent boundary layer beneath melting ice shelves, stratified turbulence, and the influence of physical processes on biogeochemical dynamics. Please see his homepage here for more information. https://www.damtp.cam.ac.uk/person/jrt51 

Abstract

Global scale ocean currents are strongly constrained by the Earth’s rotation, while this effect is generally negligible at small scales. In between, motions with scales from 1-10km are marginally affected by the Earth’s rotation. These intermediate scales, collectively termed the ocean submesoscale, have been hidden from view until recent years. Evidence from field measurements, numerical models, and satellite data have shown that submesoscales play a particularly important role in the upper ocean where they help to control the transport of material between the ocean surface and interior. In this talk I will review some recent work on submesoscale dynamics and their influence on biogeochemistry and accumulation of microplastics in the surface waters.

 

 

Subscribe to L3