The Zilber-Pink conjecture: a review
Abstract
I will recall the Zilber-Pink conjecture for Shimura varieties and give my perspective on current progress towards a proof.
I will recall the Zilber-Pink conjecture for Shimura varieties and give my perspective on current progress towards a proof.
Consider the following "controlled" random graph process: edges of the complete graph are revealed one by one in random order to an online algorithm, which immediately decides whether to retain each observed edge. The algorithm's objective is to construct a graph property within specified constraints on the total number of observed edges ("time") and the total number of retained edges ("budget").
During this talk, I will present results in this model for natural graph properties, such as connectivity, Hamiltonicity, and containment of fixed-size subgraphs. Specifically, I will describe a strategy to construct a Hamilton cycle at the hitting time for minimum degree 2 by retaining a linear number of edges. This extends the classical hitting time result for Hamiltonicity originally established by Ajtai–Komlós–Szemerédi and Bollobás.
The talk is based on joint work with Alan Frieze and Michael Krivelevich.
Habegger showed that a subvariety of a fibre power of the Legendre family of elliptic curves contains a Zariski-dense set of special points if and only if it is special. I'll explain this result, and discuss an effective version that Gal Binyamini, Harry Schmidt, Margaret Thomas and I proved.
I will present a generalisation of the Elekes-Szabó result, that any ternary algebraic relation in characteristic 0 having large intersections with (certain) finite grids must essentially be the graph of a group law, to a version where one obtains an algebraic group action. In the end the conclusion will be similar, but with weaker assumptions. This is recent work with Tingxiang Zou.
A key ingredient in the proof of the model completeness of the real exponential field was a valuation inequality for polynomially bounded o-minimal structures. I shall briefly describe the argument, and then move on to the complex exponential field and Zilber's quasiminimality conjecture for this structure. Here, one can reduce the problem to that of establishing an analytic continuation property for (complex) germs definable in a certain o-minimal expansion of the real field and in order to study this question I propose notions of "complex Hardy fields" and "complex valuations". Here, the value group is not necessarily ordered but, nevertheless, one can still prove a valuation inequality.
The Celestial Holography program encompasses recent efforts to understand the flat space hologram in terms of a CFT living on the celestial sphere. Here we have fun relating various extrapolate dictionaries in CCFT and examining tools we can apply when perturbing around a 4D CFT in the bulk.
The seminar concerns the study of evolution equations on graphs, motivated by applications in data science and opinion dynamics. We will discuss graph analogues of the continuum nonlocal-interaction equation and interpret them as gradient flows with respect to a graph Wasserstein distance, using Benamou--Brenier formulation. The underlying geometry of the problem leads to a Finslerian gradient flow structure, rather than Riemannian, since the resulting distance on graphs is actually a quasi-metric. We will address the existence of suitably defined solutions, as well as their asymptotic behaviour when the number of vertices converges to infinity and the graph structure localises. The two limits lead to different dynamics. From a slightly different perspective, by means of a classical fixed-point argument, we can show the existence and uniqueness of solutions to a larger class of nonlocal continuity equations on graphs. In this context, we consider general interpolation functions of the mass on the edges, which give rise to a variety of different dynamics. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen. The latter study can be extended to equations on co-evolving graphs. The talk is based on works in collaboration with G. Heinze (Augsburg), L. Mikolas (Oxford), F. S. Patacchini (IFP Energies Nouvelles), A. Schlichting (University of Münster), and D. Slepcev (Carnegie Mellon University).
In this talk, I will present new results addressing two rather well-known problems on the embeddability of planar graphs on point-sets in the plane. The first problem, often attributed to Mohar, asks for the asymptotics of the minimum size of so-called universal point sets, i.e. point sets that simultaneously allow straight-line embeddings of all planar graphs on $n$ vertices. In the first half of the talk I will present a family of point sets of size $O(n)$ that allow straight-line embeddings of a large family of $n$-vertex planar graphs, including all bipartite planar graphs. In the second half of the talk, I will present a family of $(3+o(1))\log_2(n)$ planar graphs on $n$ vertices that cannot be simultaneously embedded straight-line on a common set of $n$ points in the plane. This significantly strengthens the previously best known exponential bound.
We determine the minimal forbidden minors characterising the class of countable graphs that embed into some compact surface. We will also discuss Thomas’s conjecture that the Robertson—Seymour Graph Minor Theorem extends to countably infinite graphs. [https://arxiv.org/abs/2301.11042]
We show that every 2-coloring of the natural numbers and any finite coloring of the rationals contains monochromatic sets of the form $\{x, y, xy, x+y\}$. We also discuss generalizations and obstructions to extending this result to arbitrary finite coloring of the naturals. This is partially based on joint work with Marcin Sabok.