Thu, 05 May 2011
17:00
L3

"Model theory of local fields and counting problems in Chevalley groups"

Jamshid Derakhshan
(Oxford)
Abstract

This is joint with with Mark Berman, Uri Onn, and Pirita Paajanen.

 

Let K be a local field with valuation ring O and residue field of size q, and G a Chevalley group. We study counting problems associated with the group G(O). Such counting problems are encoded in certain zeta functions defined as Poincare series in q^{-s}. It turns out that these zeta functions are bounded sums of rational functions and depend only on q for all local fields of sufficiently large residue characteristic. We apply this to zeta functions counting conjugacy classes or dimensions of Hecke modules of interwining operators in congruence quotients of G(O). To prove this we use model-theoretic cell decomposition and quantifier-elimination to get a theorem on the values of 'definable' integrals over local fields as the local field varies.

Mon, 20 Jun 2011
14:15
L3

Periods of Cubic Surfaces

Domingo Toledo
(Utah)
Abstract

The moduli space of cubic surfaces is known to be isomorphic to a quotient of the unit ball in C^4 by an arithmetic

group. We review this construction, then explain how to construct

an explicit inverse to the period map by using suitable theta functions. This gives a new proof of the isomorphism between the two spaces.

Tue, 07 Jun 2011

15:45 - 16:45
L3

Birational models of the Hilbert Scheme of Points in $P^2$ as Moduli of Bridgeland-stable Objects

Aaron Bertram
(Utah)
Abstract

The effective cone of the Hilbert scheme of points in $P^2$ has

finitely many chambers corresponding to finitely many birational models.

In this talk, I will identify these models with moduli of

Bridgeland-stable two-term complexes in the derived category of

coherent sheaves on $P^2$ and describe a

map from (a slice of) the stability manifold of $P^2$

to the effective cone of the Hilbert scheme that would explain the

correspondence. This is joint work with Daniele Arcara and Izzet Coskun.

Subscribe to L3