Trivertices and SU(2)'s
Abstract
Stability conditions on local P^2
Abstract
Ramsey Classes of Graphs and Beyond
Abstract
It is known that generic and universal structures and Ramsey classes are related. We explain this connection and complement it by some new examples. Particularly we disscuss universal and Ramsey classes defined by existence and non-existence of homomorphisms.
Average-case performance of three-dimensional assignment heuristics
Abstract
The 2-dimensional assignment problem (minimum cost matching) is solvable in polynomial time, and it is known that a random instance of size n, with entries chosen independently and uniformly at random from [0,1], has expected cost tending to π^2/6. In dimensions 3 and higher, the "planar" assignment problem is NP-complete, but what is the expected cost for a random instance, and how well can a heuristic do? In d dimensions, the expected cost is of order at least n^{2-d} and at most ln n times larger, but the upper bound is non-constructive. For 3 dimensions, we show a heuristic capable of producing a solution within a factor n^ε of the lower bound, for any constant ε, in time of order roughly n^{1/ε}. In dimensions 4 and higher, the question is wide open: we don't know any reasonable average-case assignment heuristic.
Component structure of the vacant set induced by a random walk on a random graph
Abstract
We consider random walks on two classes of random graphs and explore the likely structure of the the set of unvisited vertices or vacant set. In both cases, the size of the vacant set $N(t)$ can be obtained explicitly as a function of $t$. Let $\Gamma(t)$ be the subgraph induced by the vacant set. We show that, for random graphs $G_{n,p}$ above the connectivity threshold, and for random regular graphs $G_r$, for constant $r\geq 3$, there is a phase transition in the sense of the well-known Erdos-Renyi phase transition. Thus for $t\leq (1-\epsilon)t^*$ we have a unique giant plus components of size $O(\log n)$ and for $t\geq (1+\epsilon)t^*$ we have only components of size $O(\log n)$.
In the case of $G_r$ we describe the likely degree sequence, size of the giant component and structure of the small ($O(\log n)$) size components.
The degree distribution of random planar graphs
Abstract
A random planar graph $P_n$ is a graph drawn uniformly at random from the class of all (labelled) planar graphs on $n$ vertices. In this talk we show that with probability $1-o(1)$ the number of vertices of degree $k$ in $P_n$ is very close to a quantity $d_k n$ that we determine explicitly. Here $k=k(n) \le c \log n$. In the talk our main emphasis will be on the techniques for proving such results. (Joint work with Kosta Panagiotou.)