16:00
"Topos theory in the foundations of physics"
Abstract
I will consider the physical background, and general thinking behind, the recent programme aimed at applying topos theory to the foundations of physics.
I will consider the physical background, and general thinking behind, the recent programme aimed at applying topos theory to the foundations of physics.
Words are building blocks of sentences, yet the meaning of a sentence goes well beyond meanings of its words. Formalizing the process of meaning assignment is proven a challenge for computational and mathematical linguistics; with the two most successful approaches each missing on a key aspect: the 'algebraic' one misses on the meanings of words, the vector space one on the grammar.
I will present a theoretical setting where we can have both! This is based on recent advances in ordered structures by Lambek, referred to as pregroups and the categorical/diagrammatic approach used to model vector spaces by Abramsky and Coecke. Surprisingly. both of these structures form a compact category! If time permits, I will also work through a concrete example, where for the first time in the field we are able to compute and compare meanings of sentences compositionally. This is collaborative work with E. Greffenstete, C. Clark, B. Coecke, S. Pulman.
The central axis of the famous DNA double helix can become knotted
or linked as a result of numerous biochemical processes, most notably
site-specific recombination. Site-specific recombinases are naturally
occurring enzymes that cleave and reseal DNA molecules in very precise ways.
As a by product of their main purpose, they manipulate cellular DNA in
topologically interesting and non-trivial ways. So if the axis of the DNA
double helix is circular, these cut-and-seal mechanisms can be tracked by
corresponding changes in the knot type of the DNA axis. In this talk, I'll
explain several topological strategies to investigate these biological
situations. As a concrete example, I will disscuss my recent work, which
predics what types of DNA knots and links can arise from site-specific
recombination on DNA twist knots.
It is known that the expansion of the real field by some quasianalytic algebras of functions are o-minimal and polynomially bounded. We prove that, for these structures, the preparation theorem for definable functions proved by L. van den Dries and P. Speissegger has an explicit form, from which it is easy to deduce a quantifier elimination result.
I shall describe some recent results about the asymptotic behaviour of matroids.
Specifically almost all matroids are simple and have probability at least 1/2 of being connected.
Also, various quantitative results about rank, number of bases and number and size of circuits of almost all matroids are given. There are many open problems and I shall not assume any previous knowledge of matroids. This is joint work, see below.
1 D. Mayhew, M. Newman, D. Welsh and G. Whittle,
On the asymptotic properties of connected matroids, European J. Combin. to appear
2 J. Oxley, C. Semple, L. Wasrshauer and D. Welsh,
On properties of almost all matroids, (2011) submitted
There are several different approaches to noncommutative algebraic geometry. I will present one of these approaches. A noncommutative space will be an (abelian) category. I will show how to associate a ringed space to a category. In the case of the category of quasi-coherent sheaves on a scheme this construction will recover the scheme back. I will also give examples coming from quantum groups.