Fri, 17 May 2024

14:00 - 15:00
L3

Some consequences of phenotypic heterogeneity in living active matter

Dr Philip Pearce
(Dept of Mathematics UCL)
Abstract

In this talk I will discuss how phenotypic heterogeneity affects emergent pattern formation in living active matter with chemical communication between cells. In doing so, I will explore how the emergent dynamics of multicellular communities are qualitatively different in comparison to the dynamics of isolated or non-interacting cells. I will focus on two specific projects. First, I will show how genetic regulation of chemical communication affects motility-induced phase separation in cell populations. Second, I will demonstrate how chemotaxis along self-generated signal gradients affects cell populations undergoing 3D morphogenesis.

Fri, 10 May 2024

14:00 - 15:00
L3

The determining role of cell adhesions for force transmission, mechanical activity and stiffness sensing in cells and tissues

Dr Carina Dunlop
(Dept of Mathematics University of Surrey)
Abstract

The role of tissue stiffness in controlling cell behaviours ranging from proliferation to signalling and activation is by now well accepted. A key focus of experimental studies into mechanotransduction are focal adhesions, localised patches of strong adhesion, where cell signalling has been established to occur. However, these adhesion sites themselves alter the mechanical equilibrium of the system determining the force balance and work done. To explore this I have developed an active matter continuum description of cellular contractility and will discuss recent results on the specific role of spatial positioning of adhesions in mechanotransduction. I show using energy arguments why the experimentally observed arrangements of focal adhesions develop and the implications this has for stiffness sensing and cellular contractility control. I will also show how adhesions play distinct roles in single cells and tissue layers respectively drawing on recent experimental work with Dr JR Davis (Manchester University) and Dr Nic Tapon (Crick Institute) with applications to epithelial layers and organoids.

Fri, 03 May 2024

14:00 - 15:00
L3

Epidemiological modelling with behavioural considerations and to inform policy making

Dr Edward Hill
(Dept of Mathematics University of Warwick)
Abstract
Many problems in epidemiology are impacted by behavioural dynamics, whilst in response to health emergencies prompt analysis and communication of findings is required to be of use to decision makers. Both instances are likely to benefit from interdisciplinary approaches. This talk will feature two examples, one with a public health focus and one with a veterinary health focus.
 
In the first part, I will summarise work originally conducted in late 2020 that was contributed to Scientific Pandemic Influenza Group on Modelling, Operational sub-group (SPI-M-O) of SAGE (Scientific Advisory Group for Emergencies) on Christmas household bubbles in England. This was carried out in response to a policy involving a planned easing of restrictions in England between 23–27 December 2020, with Christmas bubbles allowing people from up to three households to meet throughout the holiday period. Using a household model and computational simulation, we estimated the epidemiological impact of both this and alternative bubble strategies that allowed extending contacts beyond the immediate household.

(Associated paper: Modelling the epidemiological implications for SARS-CoV-2 of Christmas household bubbles in England in December 2020. https://doi.org/10.1016/j.jtbi.2022.111331)

In the second part, I will present a methodological pipeline developed to generate novel quantitative data on farmer beliefs with respect to disease management, process the data into a form amenable for use in mathematical models of livestock disease transmission and then refine said mathematical models according to the findings of the data. Such an approach is motivated by livestock disease models traditionally omitting variation in farmer disease management behaviours. I will discuss our application of this methodology for a fast, spatially spreading disease outbreak scenario amongst cattle herds in Great Britain, for which we elicited when farmers would use an available vaccine and then used the attained behavioural groups within a livestock disease model to make epidemiological and health economic assessments. 

(Associated paper: Incorporating heterogeneity in farmer disease control behaviour into a livestock disease transmission model. https://doi.org/10.1016/j.prevetmed.2023.106019)
Fri, 26 Apr 2024

14:00 - 15:00
L3

Polynomial dynamical systems and reaction networks: persistence and global attractors

Professor Gheorghe Craciun
(Department of Mathematics and Department of Biomolecular Chemistry, University of Wisconsin-Madison)
Abstract
The mathematical analysis of global properties of polynomial dynamical systems can be very challenging (for example: the second part of Hilbert’s 16th problem about polynomial dynamical systems in 2D, or the analysis of chaotic dynamics in the Lorenz system).
On the other hand, any dynamical system with polynomial right-hand side can essentially be regarded as a model of a reaction network. Key properties of reaction systems are closely related to fundamental results about global stability in classical thermodynamics. For example, the Global Attractor Conjecture can be regarded as a finite dimensional version of Boltzmann’s H-theorem. We will discuss some of these connections, as well as the introduction of toric differential inclusions as a tool for proving the Global Attractor Conjecture.
We will also discuss some implications for the more general Persistence Conjecture (which says that solutions of weakly reversible systems cannot "go extinct"), as well as some applications to biochemical mechanisms that implement cellular homeostasis. 
 


 

Thu, 29 Feb 2024
16:00
L3

Martingale Benamou-Brenier: arthimetic and geometric Bass martingales

Professor Jan Obloj
(Mathematical Institute)
Abstract

Optimal transport (OT) proves to be a powerful tool for non-parametric calibration: it allows us to take a favourite (non-calibrated) model and project it onto the space of all calibrated (martingale) models. The dual side of the problem leads to an HJB equation and a numerical algorithm to solve the projection. However, in general, this process is costly and leads to spiky vol surfaces. We are interested in special cases where the projection can be obtained semi-analytically. This leads us to the martingale equivalent of the seminal fluid-dynamics interpretation of the optimal transport (OT) problem developed by Benamou and Brenier. Specifically, given marginals, we look for the martingale which is the closest to a given archetypical model. If our archetype is the arithmetic Brownian motion, this gives the stretched Brownian motion (or the Bass martingale), studied previously by Backhoff-Veraguas, Beiglbock, Huesmann and Kallblad (and many others). Here we consider the financially more pertinent case of Black-Scholes (geometric BM) reference and show it can also be solved explicitly. In both cases, fast numerical algorithms are available.

Based on joint works with Julio Backhoff, Benjamin Joseph and Gregoire Leoper.  

This talk reports a work in progress. It will be done on a board.

Further Information

Please join us for refreshments outside L3 from 1530.

Thu, 07 Mar 2024
16:00
L3

Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes

Dr Emilio Ferrucci
(Mathematical Institute University of Oxford)
Abstract

Predicting real-world phenomena often requires an understanding of their causal relations, not just their statistical associations. I will begin this talk with a brief introduction to the field of causal inference in the classical case of structural causal models over directed acyclic graphs, and causal discovery for static variables. Introducing the temporal dimension results in several interesting complications which are not well handled by the classical framework. The main component of a constraint-based causal discovery procedure is a statistical hypothesis test of conditional independence (CI). We develop such a test for stochastic processes, by leveraging recent advances in signature kernels. Then, we develop constraint-based causal discovery algorithms for acyclic stochastic dynamical systems (allowing for loops) that leverage temporal information to recover the entire directed graph. Assuming faithfulness and a CI oracle, our algorithm is sound and complete. We demonstrate strictly superior performance of our proposed CI test compared to existing approaches on path-space when tested on synthetic data generated from SDEs, and discuss preliminary applications to finance. This talk is based on joint work with Georg Manten, Cecilia Casolo, Søren Wengel Mogensen, Cristopher Salvi and Niki Kilbertus: https://arxiv.org/abs/2402.18477 .

Further Information

Please join us for refreshments outside L3 from 1530.

Thu, 22 Feb 2024

12:00 - 13:00
L3

Structural identifiability analysis: An important tool in systems modelling

Michael Chappell
(University of Warwick)
Abstract

For many systems (certainly those in biology, medicine and pharmacology) the mathematical models that are generated invariably include state variables that cannot be directly measured and associated model parameters, many of which may be unknown, and which also cannot be measured.  For such systems there is also often limited access for inputs or perturbations. These limitations can cause immense problems when investigating the existence of hidden pathways or attempting to estimate unknown parameters and this can severely hinder model validation. It is therefore highly desirable to have a formal approach to determine what additional inputs and/or measurements are necessary in order to reduce or remove these limitations and permit the derivation of models that can be used for practical purposes with greater confidence.

Structural identifiability arises in the inverse problem of inferring from the known, or assumed, properties of a biomedical or biological system a suitable model structure and estimates for the corresponding rate constants and other model parameters.  Structural identifiability analysis considers the uniqueness of the unknown model parameters from the input-output structure corresponding to proposed experiments to collect data for parameter estimation (under an assumption of the availability of continuous, noise-free observations).  This is an important, but often overlooked, theoretical prerequisite to experiment design, system identification and parameter estimation, since estimates for unidentifiable parameters are effectively meaningless.  If parameter estimates are to be used to inform about intervention or inhibition strategies, or other critical decisions, then it is essential that the parameters be uniquely identifiable. 

Numerous techniques for performing a structural identifiability analysis on linear parametric models exist and this is a well-understood topic.  In comparison, there are relatively few techniques available for nonlinear systems (the Taylor series approach, similarity transformation-based approaches, differential algebra techniques and the more recent observable normal form approach and symmetries approaches) and significant (symbolic) computational problems can arise, even for relatively simple models in applying these techniques.

In this talk an introduction to structural identifiability analysis will be provided demonstrating the application of the techniques available to both linear and nonlinear parameterised systems and to models of (nonlinear mixed effects) population nature.


 
Tue, 04 Jun 2024

14:30 - 15:00
L3

Structure-preserving low-regularity integrators for dispersive nonlinear equations

Georg Maierhofer
(Mathematical Institute (University of Oxford))
Abstract

Dispersive nonlinear partial differential equations can be used to describe a range of physical systems, from water waves to spin states in ferromagnetism. The numerical approximation of solutions with limited differentiability (low-regularity) is crucial for simulating fascinating phenomena arising in these systems including emerging structures in random wave fields and dynamics of domain wall states, but it poses a significant challenge to classical algorithms. Recent years have seen the development of tailored low-regularity integrators to address this challenge. Inherited from their description of physicals systems many such dispersive nonlinear equations possess a rich geometric structure, such as a Hamiltonian formulation and conservation laws. To ensure that numerical schemes lead to meaningful results, it is vital to preserve this structure in numerical approximations. This, however, results in an interesting dichotomy: the rich theory of existent structure-preserving algorithms is typically limited to classical integrators that cannot reliably treat low-regularity phenomena, while most prior designs of low-regularity integrators break geometric structure in the equation. In this talk, we will outline recent advances incorporating structure-preserving properties into low-regularity integrators. Starting from simple discussions on the nonlinear Schrödinger and the Korteweg–de Vries equation we will discuss the construction of such schemes for a general class of dispersive equations before demonstrating an application to the simulation of low-regularity vortex filaments. This is joint work with Yvonne Alama Bronsard, Valeria Banica, Yvain Bruned and Katharina Schratz.

Tue, 04 Jun 2024

14:00 - 14:30
L3

HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton--Jacobi PDEs and score-based generative models

Tingwei Meng
(UCLA)
Abstract

The interplay between stochastic processes and optimal control has been extensively explored in the literature. With the recent surge in the use of diffusion models, stochastic processes have increasingly been applied to sample generation. This talk builds on the log transform, known as the Cole-Hopf transform in Brownian motion contexts, and extends it within a more abstract framework that includes a linear operator. Within this framework, we found that the well-known relationship between the Cole-Hopf transform and optimal transport is a particular instance where the linear operator acts as the infinitesimal generator of a stochastic process. We also introduce a novel scenario where the linear operator is the adjoint of the generator, linking to Bayesian inference under specific initial and terminal conditions. Leveraging this theoretical foundation, we develop a new algorithm, named the HJ-sampler, for Bayesian inference for the inverse problem of a stochastic differential equation with given terminal observations. The HJ-sampler involves two stages: solving viscous Hamilton-Jacobi (HJ) partial differential equations (PDEs) and sampling from the associated stochastic optimal control problem. Our proposed algorithm naturally allows for flexibility in selecting the numerical solver for viscous HJ PDEs. We introduce two variants of the solver: the Riccati-HJ-sampler, based on the Riccati method, and the SGM-HJ-sampler, which utilizes diffusion models. Numerical examples demonstrate the effectiveness of our proposed methods. This is an ongoing joint work with Zongren Zou, Jerome Darbon, and George Em Karniadakis.

Subscribe to L3