Thu, 11 May 2023
17:00
L3

Quasiminimality of Complex Powers

Francesco Gallinaro
(University of Freiburg)
Abstract

A conjecture due to Zilber predicts that the complex exponential field is quasiminimal: that is, that all subsets of the complex numbers that are definable in the language of rings expanded by a symbol for the complex exponential function are countable or cocountable.
Zilber showed that this conjecture would follow from Schanuel's Conjecture and an existential closedness type property asserting that certain systems of exponential-polynomial equations can be solved in the complex numbers; later on, Bays and Kirby were able to remove the dependence on Schanuel's Conjecture, shifting all the focus to the existence of solutions. In this talk, I will discuss recent work about the quasiminimality of a reduct of the complex exponential field, that is, the complex numbers expanded by multivalued power functions. This is joint work with Jonathan Kirby.

Tue, 13 Jun 2023

12:00 - 13:15
L3

Uncovering the Structure of the ε Expansion

Andreas Stergiou
(Kings College London)
Abstract

The ε expansion was invented more than 50 years ago and has been used extensively ever since to study aspects of renormalization group flows and critical phenomena. Its most famous applications are found in theories involving scalar fields in 4−ε dimensions. In this talk, we will discuss the structure of the ε expansion and the fixed points that can be obtained within it. We will mostly focus on scalar theories, but we will also discuss theories with fermions as well as line defects. Our motivation is based on the goal of classifying conformal field theories in d=3 dimensions. We will describe recently discovered universal constraints obtained within the framework of the ε expansion and show that a “heavy handed" quest for fixed points yields a plethora of new ones. These fixed points reveal aspects of the structure of the ε expansion and suggest that a classification of conformal field theories in d=3 is likely to be highly non-trivial.

Thu, 18 May 2023
17:00
L3

How to find pointwise definable and Leibnizian extensions of models of arithmetic and set theory

Joel David Hamkins
(University of Notre Dame)
Abstract

I shall present a new flexible method showing that every countable model of PA admits a pointwise definable end-extension, one in which every point is definable without parameters. Also, any model of PA of size at most continuum admits an extension that is Leibnizian, meaning that any two distinct points are separated by some expressible property. Similar results hold in set theory, where one can also achieve V=L in the extension, or indeed any suitable theory holding in an inner model of the original model.

Tue, 13 Jun 2023
14:30
L3

Approximating Functions of Sparse Matrices using Matrix-vector Products

Taejun Park
(University of Oxford)
Abstract

The computation of matrix function is an important task appearing in many areas of scientific computing. We propose two algorithms, one for banded matrices and the other for general sparse matrices that approximate f(A) using matrix-vector products only. Our algorithms are inspired by the decay bound for the entries of f(A) when A is banded or sparse. We show its exponential convergence when A is banded or sufficiently sparse and we demonstrate its performance using numerical experiments.

Wed, 26 Apr 2023

11:00 - 12:00
L3

"Orthogonal Intertwiners for Infinite Particle Systems On The Continuum"; "Spectral gap of the symmetric inclusion process".

Stefan Wagner and Federico Sau
Abstract

Orthogonal Intertwiners for Infinite Particle Systems On The Continuum:

Interacting particle systems are studied using powerful tools, including 
duality. Recently, dualities have been explored for inclusion processes, 
exclusion processes, and independent random walkers on discrete sets 
using univariate orthogonal polynomials. This talk generalizes these 
dualities to intertwiners for particle systems on more general spaces, 
including the continuum. Instead of univariate orthogonal polynomials, 
the talk dives into the theory of infinite-dimensional polynomials 
related to chaos decompositions and multiple stochastic integrals. The 
new framework is applied to consistent particle systems containing a 
finite or infinite number of particles, including sticky and correlated 
Brownian motions.

Spectral gap of the symmetric inclusion process:

In this talk, we consider the symmetric inclusion process on a general finite graph. Our main result establishes universal upper and lower bounds for the spectral gap of this interacting particle system in terms of the spectral gap of the random walk on the same graph. In the regime in which the gamma-like reversible measures of the particle system are log-concave, our bounds match, yielding a version for the symmetric inclusion process of the celebrated Aldous' spectral gap conjecture --- originally formulated for the interchange process and proved by Caputo, Liggett and Richthammer (JAMS 2010). Finally, by means of duality techniques, we draw analogous conclusions for an interacting diffusion-like unbounded conservative spin system known as Brownian energy process, which may be interpreted as a spatial version of the Wright-Fisher diffusion with mutation. Based on a joint work with Seonwoo Kim (SNU, South Korea).

Tue, 13 Jun 2023
14:00
L3

Constructing Structure-Preserving Timesteppers via Finite Elements in Time

Boris Andrews
(University of Oxford)
Abstract

For many stationary-state PDEs, solutions can be shown to satisfy certain key identities or structures, with physical interpretations such as the dissipation of energy. By reformulating these systems in terms of new auxiliary functions, finite-element models can ensure these structures also hold exactly for the numerical solutions. This approach is known to improve the solutions' accuracy and reliability.

In this talk, we extend this auxiliary function approach to the transient case through a finite-element-in-time interpretation. This allows us to develop novel structure-preserving timesteppers for various transient problems, including the Navier–Stokes and MHD equations, up to arbitrary order in time.

 

Tue, 02 May 2023
14:30
L3

Newton-MR methods for nonconvex optimization

Yang Liu
(University of Oxford)
Abstract

In this talk, we introduce Newton-MR variants for solving nonconvex optimization problems. Unlike the overwhelming majority of Newton-type methods, which rely on conjugate gradient method as the primary workhorse for their respective sub-problems, Newton-MR employs minimum residual (MINRES) method. With certain useful monotonicity properties of MINRES as well as its inherent ability to detect non-positive curvature directions as soon as they arise, we show that our algorithms come with desirable properties including the optimal first and second-order worst-case complexities. Numerical examples demonstrate the performance of our proposed algorithms.

Tue, 25 Apr 2023

12:00 - 13:15
L3

Bootstrapping surface defects in the 6d N=(2,0) theories

Carlo Meneghelli
(Università di Parma)
Abstract

6d N=(2,0) superconformal field theories have natural surface operators similar in many ways to Wilson lines in gauge theories. In this talk, I will discuss how they can be studied using conformal bootstrap techniques, including connection to W-algebras and the so-called inversion formula, focusing on the limit of large central charge.

Subscribe to L3