Thu, 13 Nov 2008
16:00
L3

On the density of solutions to Diophantine equations.

Oscar Marmon
(Chalmers University of Technology)
Abstract

In a paper from 1994, 'The density of rational points on non-singular hypersurfaces', Heath-Brown developed a `multi-dimensional q-analogue'

of van der Corput's method of exponential sums, giving good bounds for the density of solutions to Diophantine equations in many variables. I will discuss this method and present some generalizations.

Thu, 06 Nov 2008
16:00
L3

"Annihilating Ideals for Class Groups of Number Fields"

David Solomon
(Kings College London)
Abstract

"Stickelberger's famous theorem (from 1890) gives an explicit ideal which annihilates the imaginary part of the class group of an abelian field as a module for the group-ring of the Galois group. In the 1980s Tate and Brumer proposed a generalisation of Stickelberger's Theorem (and his ideal) to other abelian extensions of number fields, the so-called `Brumer-Stark conjecture'.

I shall discuss some of the many unresolved issues connected with the annihilation of class groups of number fields. For instance, should the (generalised) Stickelberger ideal be the full annihilator, the Fitting ideal or what? And what can we say in the plus part (where Stickelberger's Theorem is trivial)?"

Thu, 23 Oct 2008
16:00
L3

The circle method with weights and Tschinkel's problem

Nic Niedermowwe
(Oxford)
Abstract

We show how the circle method with a suitably chosen Gaussian weight can be used to count unweighted zeros of polynomials. Tschinkel's problem asks for the density of solutions to Diophantine equations with S-unit and integral variables.

Wed, 19 Nov 2008
16:00
L3

TBA

James Vicary
(Comlab)
Wed, 12 Nov 2008
16:00
L3

'Two-point sets and the Axiom of Choice'.

Ben Chad
(Oxford)
Abstract

'A two-point set is a subset of the plane which meets every line in exactly two points. The existence of two-point sets was shown by Mazurkiewicz in 1914, and the main open problem concerning these objects is to determine if there exist Borel two-point sets. If this question has a positive answer, then we most likely need to be able to construct a two-point set without making use of a well-ordering of the real line, as is currently the usual technique.

We discuss recent work by Robin Knight, Rolf Suabedissen and the speaker, and (independently) by Arnold Miller, which show that it is consistent with ZF that the real line cannot be well-ordered and also that two-point sets exist.'

Subscribe to L3