Linear equations over multiplicative groups in positive characteristic, sums of recurrences, and ergodic mixing
Abstract
Models of quantum phenomena
Abstract
[This is a joint seminar with OASIS]
A formulation of quantum mechanics in terms of symmetric monoidal categories
provides a logical foundation as well as a purely diagrammatic calculus for
it. This approach was initiated in 2004 in a joint paper with Samson
Abramsky (Ox). An important role is played by certain Frobenius comonoids,
abstract bases in short, which provide an abstract account both on classical
data and on quantum superposition. Dusko Pavlovic (Ox), Jamie Vicary (Ox)
and I showed that these abstract bases are indeed in 1-1 correspondence with
bases in the category of Hilbert spaces, linear maps, and the tensor
product. There is a close relation between these abstract bases and linear
logic. Joint work with Ross Duncan (Ox) shows how incompatible abstract
basis interact; the resulting structures provide a both logical and
diagrammatic account which is sufficiently expressive to describe any state
and operation of "standard" quantum theory, and solve standard problems in a
non-standard manner, either by diagrammatic rewrite or by automation.
But are there interesting non-standard models too, and what do these teach
us? In this talk we will survey the above discussed approach, present some
non-standard models, and discuss in how they provide new insights in quantum
non-locality, which arguably caused the most striking paradigm shift of any
discovery in physics during the previous century. The latter is joint work
with Bill Edwards (Ox) and Rob Spekkens (Perimeter Institute).
17:00
On Intersection with Tori
Abstract
Vertices of simple modules for symmetric groups
Abstract
We consider the symmetric group S_n of degree n and an algebraically
closed field F of prime characteristic p.
As is well-known, many representation theoretical objects of S_n
possess concrete combinatorial descriptions such as the simple
FS_n-modules through their parametrization by the p-regular partitions of n,
or the blocks of FS_n through their characterization in terms of p-cores
and p-weights. In contrast, though closely related to blocks and their
defect groups, the vertices of the simple FS_n-modules are rather poorly
understood. Currently one is far from knowing what these vertices look
like in general and whether they could be characterized combinatorially
as well.
In this talk I will refer to some theoretical and computational
approaches towards the determination of vertices of simple FS_n-modules.
Moreover, I will present some results concerning the vertices of
certain classes of simple FS_n-modules such as the ones labelled by
hook partitions or two part partitions, and will state a series of
general open questions and conjectures.
Hochschild homology and global dimension
Abstract
In 1989, Happel raised the following question: if the Hochschild cohomology
groups of a finite dimensional algebra vanish in high degrees, then does the
algebra have finite global dimension? This was answered negatively in a
paper by Buchweitz, Green, Madsen and Solberg. However, the Hochschild
homology version of Happel's question, a conjecture given by Han, is open.
We give a positive answer to this conjecture for local graded algebras,
Koszul algebras and cellular algebras. The proof uses Igusa's formula for
relating the Euler characteristic of relative cyclic homology to the graded
Cartan determinant. This is joint work with Dag Madsen.
14:15