Tue, 28 Oct 2008

12:00 - 13:15
L3

Quantum transport of 2D Dirac fermions: The case for a topological metal

Christopher Mudry (PSI, visiting Newton Institute)
Abstract

The problem of Anderson localization in graphene

has generated a lot of renewed attention since graphene flakes

have been accessible to transport and spectroscopic probes.

The popularity of graphene derives from it realizing planar Dirac

fermions. I will show under what conditions disorder for

planar Dirac fermions does not result in localization but rather in a

metallic state that might be called a topological metal.

Thu, 06 Nov 2008

14:30 - 15:30
L3

q-Schur algebras, Wedderburn decomposition and James' conjecture

Max Neunhoeffer
(St Andrews)
Abstract

In this talk we present a new construction of a Wedderburn basis for

the generic q-Schur algebra using the Du-Kazhdan-Lusztig basis. We show

that this gives rise to a new view on the Du-Lusztig homomorphism to the

asymptotic algebra. At the end we explain a potential plan for an attack

on James' conjecture using a reformulation by Meinolf Geck.

The talk starts with a gentle recollection of facts about

Iwahori-Hecke-Algebras of type A and q-Schur algebras and aims to be

accessible to people who are not (yet) experts in the representation

theory of q-Schur algebras.

All this is joint work with Olivier Brunat (Bochum).

Thu, 30 Oct 2008

14:30 - 15:30
L3

The Brauer algebra and a symplectic Schur functor

Rudolf Tange
(York)
Abstract

It is well-known that there is a strong link between the representation

theories of the general linear group and the symmetric group over the

complex numbers. J.A.Green has shown that this in also true over infinite

fields of positive characteristic. For this he used the Schur functor as

introduced by I.Schur in his PhD thesis.

In this talk I will show that one can do the same thing for the symplectic

group and the Brauer algebra. This is joint work with S.Donkin. As a

consequence we obtain that (under certain conditions) the Brauer algebra and

the symplectic Schur algebra in characteristic p have the same block

relation. Furthermore we obtain a new proof of the description of the blocks

of the Brauer algebra in characteristic zero as obtained by Cox, De Visscher

and Martin.

Thu, 05 Feb 2009

14:30 - 15:30
L3

Generalized traces and modified dimensionsIn this talk I will discuss how to construct generalized traces

Nathan Geer
(Georgia Institute of Technology/Oxford)
Abstract

In this talk I will discuss how to construct generalized traces

and modified dimensions in certain categories of modules. As I will explain

there are several examples in representation theory where the usual trace

and dimension are zero, but these generalized traces and modified dimensions

are non-zero. Such examples include the representation theory of the Lie

algebra sl(2) over a field of positive characteristic and of Lie

superalgebras over the complex numbers. In these examples the modified

dimensions can be interpreted categorically and are closely related to some

basic notions involving the representation theory. This joint work with Jon

Kujawa and Bertrand Patureau.

Subscribe to L3