14:15
14:15
14:15
14:15
A K-theoretic codimension 2 obstruction to positive scalar curvature
Abstract
Let M be a closed spin manifold.
Gromov and Lawson have shown that the presence of certain "enlargeable"
submanifolds of codimension 2 is an obstruction to the existence of a Riemannian metric with positive scalar curvature on M.
In joint work with Hanke, we refine the geoemtric condition of
"enlargeability": it suffices that a K-theoretic index obstruction of the submanifold doesn't vanish.
A "folk conjecture" asserts that all index type obstructions to positive scalar curvature should be read off from the corresponding index for the ambient manifold M (this this is equivalent to a small part of the strong Novikov conjecture). We address this question for the obstruction above and discuss partial results.
14:15
14:15
Quiver representations and the enumeration of graphs
Abstract
We show that the leading terms of the number of absolutely indecomposable representations of a quiver over a finite field are related to counting graphs. This is joint work with Geir Helleloid.
On the Extraction of Physical Content from Asymptotically Flat Space-times Metrics
Abstract
A major issue in general relativity, from its earliest days to the
present, is how to extract physical information from any solution or
class of solutions to the Einstein equations. Though certain
information can be obtained for arbitrary solutions, e.g., via geodesic
deviation, in general, because of the coordinate freedom, it is often
hard or impossible to do. Most of the time information is found from
special conditions, e.g., degenerate principle null vectors, weak
fields close to Minkowski space (using coordinates close to Minkowski
coordinates) or from solutions that have symmetries or approximate
symmetries. In the present work we will be concerned with
asymptotically flat space times where the approximate symmetry is the
Bondi-Metzner-Sachs (BMS) group. For these spaces the Bondi
four-momentum vector and its evolution, found from the Weyl tensor at
infinity, describes the total energy-momentum of the interior source
and the energy-momentum radiated. By generalizing certain structures
from algebraically special metrics, by generalizing the Kerr and the
charged-Kerr metric and finally by defining (at null infinity) the
complex center of mass (the real center of mass plus 'i' times the
angular momentum) with its transformation properties, a large variety
of physical identifications can be made. These include an auxiliary
Minkowski space viewed from infinity, kinematic meaning to the Bondi
momentum, dynamical equations of motion for the center of mass, a
geometrically defined spin angular momentum and a conservation law with
flux for total angular momentum.
Global and local properties of finite groups revisited
Abstract
This is joint work with Diaz, Glesser and Park.
In Proc. Instructional Conf, Oxford 1969, G. Glauberman shows that
several global properties of a finite group are determined by the properties
of its p-local subgroups for some prime p. With Diaz, Glesser and Park, we
reviewed these results by replacing the group by a saturated fusion system
and proved that the ad hoc statements hold. In this talk, we will present
the adapted versions of some of Glauberman and Thompson theorems.