Thu, 13 Feb 2025

12:00 - 13:00
L3

Various

Various Speakers from OCIAM Year 2 Graduates
(Mathematical Institute)
Tue, 21 Jan 2025

16:00 - 17:00
L3

Quo Vadis

Nati Linial
(Hebrew University of Jerusalem)
Abstract

Paraphrasing the title of Riemann’s famous lecture of 1854 I ask: What is the most rudimentary notion of a geometry? A possible answer is a path system: Consider a finite set of “points” $x_1,…,x_n$ and provide a recipe how to walk between $x_i$ and $x_j$ for all $i\neq j$, namely decide on a path $P_{ij}$, i.e., a sequence of points that starts at $x_i$ and ends at $x_j$, where $P_{ji}$ is $P_{ij}$, in reverse order. The main property that we consider is consistency. A path system is called consistent if it is closed under taking subpaths. What do such systems look like? How to generate all of them? We still do not know. One way to generate a consistent path system is to associate a positive number $w_{ij}>0$ with every pair and let $P_{ij}$ be the corresponding $w$-shortest path between $x_i$ and $x_j$. Such a path system is called metrical. It turns out that the class of consistent path systems is way richer than the metrical ones.

My main emphasis in this lecture is on what we don’t know and wish to know, yet there is already a considerable body of work that we have done on the subject.

The new results that I will present are joint with my student Daniel Cizma as well as with him and with Maria Chudnovsky.

Wed, 07 May 2025
16:00
L3

Drawing Knots on Surfaces

Samuel Ketchell
(University of Oxford)
Abstract

There is a well-known class of knots, called torus knots, which are those that can be drawn on a "standardly embedded" torus (one that separates the 3-sphere into two solid tori). A fairly natural property of other knots to consider is the genus necessary for that knot to be drawn on a standardly embedded genus g surface. This knot invariant has been studied under the name "embeddability". The goal of this talk is to introduce the invariant, look at some upper and lower bounds in terms of other invariants, and examine its behavior under connected sum.

Wed, 29 Jan 2025
15:00
L3

Emergent Phenomena in Critical Models of Statistical Physics: Exploring 2D Percolation

Prof Hugo Duminil-Copin
(IHES)
Abstract

For over 150 years, the study of phase transitions—such as water freezing into ice or magnets losing their magnetism—has been a cornerstone of statistical physics. In this talk, we explore the critical behavior of two-dimensional percolation models, which use random graphs to model the behavior of porous media. At the critical point, remarkable symmetries and emergent properties arise, providing precise insights into the nature of these systems and enriching our understanding of phase transitions. The presentation is designed to be accessible and does not assume any prior background in percolation theory.

 

About the Speaker

Hugo Duminil-Copin is is a French mathematician recognised for his groundbreaking work in probability theory and mathematical physics. He was appointed full professor at the University of Geneva in 2014 and since 2016 has also been a permanent professor at the Institut des Hautes Études Scientifiques (IHES) in France. In 2022 he was awarded the Fields Medal, the highest distinction in mathematics.

Mon, 17 Feb 2025
15:30
L3

Stochastic wave equations with constraints: well-posedness and Smoluchowski-Kramers diffusion approximation

Prof Zdzislaw Brzezniak
(University of York)
Abstract

I will discuss  the well-posedness of a class of stochastic second-order in time-damped evolution equations in Hilbert spaces, subject to the constraint that the solution lies on  the unit sphere. A specific example is provided by  the stochastic damped wave equation in a bounded domain of a $d$-dimensional Euclidean space, endowed with the Dirichlet boundary conditions, with the added constraint that the $L^2$-norm of the solution is equal to one. We introduce a small mass $\mu>0$ in front of the second-order derivative in time and examine the validity of the Smoluchowski-Kramers diffusion approximation. We demonstrate that, in the small mass limit, the solution converges to the solution of a stochastic parabolic equation subject to the same constraint. We further show that an extra noise-induced drift emerges, which  in fact does not account for the Stratonovich-to-It\^{o} correction term. This talk is based on joint research with S. Cerrai (Maryland), hopefully to be published in Comm Maths Phys.

Thu, 13 Mar 2025

12:00 - 13:00
L3

Some methods for finding vortex equilibria

Robb McDonald
(UCL)
Further Information

Robb McDonald is a Professor in the Department of Mathematics. His research falls into two areas: 

(i) geophysical fluid dynamics, including rotating stratified flows, rotating hydraulics, coastal outflows, geophysical vortices and topographic effects on geophysical flows.
(ii) complex variable methods applied to 2D free-boundary problems. This includes vortex dynamics, Loewner evolution, Hele-Shaw flows and Laplacian growth, industrial coating problems, and pattern formation in nature.

 

Abstract

Determining stationary compact configurations of vorticity described by the 2D Euler equations is a classic problem dating back to the late 19th century. The aim is to find equilibrium distributions of vorticity, in the form  of point vortices, vortex sheets, vortex patches, and hollow vortices. This endeavour has driven the development of mathematical and numerical techniques such as Hamiltonian vortex dynamics and contour dynamics.

In the case of vortex sheets, methods and results are presented for finding rotating equilibria, some in the presence of point vortices. To begin, a numerical approach based on that recently developed by Trefethen, Costa, Baddoo, and others for solving Laplace's equation in the complex plane by series and rational approximation is described. The method successfully reproduces the exact vortex sheet solutions found by O'Neil (2018) and Protas & Sakajo (2020). Some new solutions are found.

The numerical approach suggests an analytical method based on conformal mapping for finding exact closed-form vortex sheet equilibria. Examples are presented.

Finally, new numerical solutions are computed for steady, doubly-connected vortex layers of uniform vorticity surrounding a solid object such that the fluid velocity vanishes on the outer free boundary. While dynamically unrelated, these solutions have mathematical analogy and application to the industrial free boundary problem arising in the dip-coating of objects by a viscous fluid.

 

Thu, 20 Feb 2025

12:00 - 13:00
L3

Advanced Effective Models in Elasticity

Claire Lestringant
(Sorbonne University)
Further Information

Dr Claire Lestringant explores new models for understanding the mechanics of thin structures under large deformations, used for example to understand morphogenesis in biological systems or for the design of multi-stable, reconfigurable space structures. She received a PhD in Mechanics from Université Pierre et Marie Curie in 2017 and worked as a post-doc in D. Kochmann’s group at ETH Zurich in Switzerland.

Abstract

I will discuss two classes of effective, macroscopic models in elasticity: (i) 1D models applicable to thin structures, and (ii) homogenized 2D or 3D continua applicable to materials with a periodic microstructure. In both systems, the separation of scales calls for the definition of macroscopic models that slave fine-scale fluctuations to an effective, macroscopic deformation field. I will show how such models can be established in a systematic and rigorous way based on a two-scale expansion that accounts for nonlinear and higher-order (i.e. deformation gradient) effects. I will further demonstrate that the resulting models accurately predict nonlinear effects, finite size effects and localization for a set of examples. Finally, I will discuss two challenges that arise when solving these effective models: (1) missed boundary layer effects and (2) negative stiffness associated with higher-order terms.

Thu, 13 Feb 2025
12:00
L3

OCIAM TBC

OCIAM TBC
Thu, 06 Feb 2025

12:00 - 13:00
L3

Modelling flying formations and vortex ring motions

Christiana Mavroyiakoumou
( Courant Institute of Mathematical Sciences)
Further Information

Christiana is an Assistant Professor at the Courant Institute of Mathematical Sciences (New York University) working in the Applied Math Lab, primarily with Leif Ristroph and Jun Zhang. Her interests are in using modeling, numerical simulations, and experiments to study fluid dynamical problems, with an emphasis on fluid-structure interactions.

Currently Christiana is working on understanding the role of flow interactions in flying bird formations and the hydrodynamics of swimming fish.

Abstract

We consider two problems in fluid dynamics: the collective locomotion of flying animals and the interaction of vortex rings with fluid interfaces. First, we present a model of formation flight, viewing the group as a material whose properties arise from the flow-mediated interactions among its members. This aerodynamic model explains how flapping flyers produce vortex wakes and how they are influenced by the wakes of others. Long in-line arrays show that the group behaves as a soft, excitable "crystal" with regularly ordered member "atoms" whose positioning is susceptible to deformations and dynamical instabilities. Second, we delve into the phenomenon of vortex ring reflections at water-air interfaces. Experimental observations reveal reflections analogous to total internal reflection of a light beam. We present a vortex-pair--vortex-sheet model to simulate this phenomenon, offering insights into the fundamental interactions of vortex rings with free surfaces.

Subscribe to L3