Thu, 04 Dec 2025
17:00
L3

Sharply k-homogeneous actions on Fraïssé structures

Robert Sullivan
(Charles University, Prague)
Abstract
Given an action of a group G on a relational Fraïssé structure M, we call this action *sharply k-homogeneous* if, for each isomorphism f : A -> B of substructures of M of size k, there is exactly one element of G whose action extends f. This generalises the well-known notion of a sharply k-transitive action on a set, and was previously investigated by Cameron, Macpherson and Cherlin. I will discuss recent results with J. de la Nuez González which show that a wide variety of Fraïssé structures admit sharply k-homogeneous actions for k ≤ 3 by finitely generated virtually free groups. Our results also specialise to the case of sets, giving the first examples of finitely presented non-split infinite groups with sharply 2-transitive/sharply 3-transitive actions.
Tue, 21 Oct 2025

14:00 - 15:00
L3

Optimal control of the Dyson equation and large deviations for Hermitian random matrices

Prof Panagiotis E. Souganidis
(University of Chicago)
Abstract

Using novel arguments as well as techniques developed over the last  twenty years to study mean field games, in this paper (i) we investigate the optimal control of the Dyson equation, which is the mean field equation for the so-called Dyson Brownian motion, that is, the stochastic particle system satisfied by the eigenvalues of large random matrices, (ii) we establish the well-posedness of the resulting infinite dimensional Hamilton-Jacobi equation, 
(iii) we provide a complete and direct proof for the large deviations for the spectrum of large random matrices, and (iv) we study the asymptotic behavior of the transition probabilities of the Dyson Brownian motion.  Joint work with Charles Bertucci and Pierre-Louis Lions.

Mon, 02 Feb 2026

15:30 - 16:30
L3

Mean field games without rational expectations

Benjamin MOLL
(LSE)
Abstract
Mean Field Game (MFG) models implicitly assume “rational expectations”, meaning that the heterogeneous agents being modeled correctly know all relevant transition probabilities for the complex system they inhabit. When there is common noise, it becomes necessary to solve the “Master equation” (a.k.a. “Monster equation”), a Hamilton-JacobiBellman equation in which the infinite-dimensional density of agents is a state variable. The rational expectations assumption and the implication that agents solve Master equations is unrealistic in many applications. We show how to instead formulate MFGs with non-rational expectations. Departing from rational expectations is particularly relevant in “MFGs with a low-dimensional coupling”, i.e. MFGs in which agents’ running reward function depends on the density only through low-dimensional functionals of this density. This happens, for example, in most macroeconomics MFGs in which these lowdimensional functionals have the interpretation of “equilibrium prices.” In MFGs with a low-dimensional coupling, departing from rational expectations allows for completely sidestepping the Master equation and for instead solving much simpler finite-dimensional HJB equations. We introduce an adaptive learning model as a particular example of nonrational expectations and discuss its properties.
Tue, 04 Nov 2025
15:30
L3

A Century of Graph Theory

Robin Wilson
(Open University)
Abstract

This illustrated historical talk covers the period from around 1890, when graph theory was still mainly a collection of isolated results, to the 1990s, when it had become part of mainstream mathematics. Among many other topics, it includes material on graph and map colouring, factorisation, trees, graph structure, and graph algorithms. 

 

 

Mon, 03 Nov 2025
15:30
L3

Formalization of Brownian motion in the Lean theorem prover

Remy Degenne
(INRIA LILLE)
Abstract

I will present a collaborative project in which we formalized the construction of Brownian motion in Lean. Lean is an interactive theorem prover, with a large mathematical library called Mathlib. I will give an introduction to Lean and Mathlib, explain why one may want to formalize mathematics, and give a tour of the probability theory part of Mathlib. I will then describe the Brownian motion project, its organization, and some of the formalized results. For that project, we developed the theory of Gaussian measures and implemented a proof of Kolmogorov's extension theorem, as well as a modern version of the Kolmogorov-Chentsov continuity theorem based on Talagrand's chaining technique. Finally, I will discuss the next step of the project: formalizing stochastic integrals.

Fri, 28 Nov 2025

12:00 - 13:15
L3

Local, universal, Riemann–Roch theorem and holomorphic QFT

Brian Williams
(Boston University)
Abstract

The universal infinitesimal symmetry of a holomorphic field theory is the Lie algebra of holomorphic vector fields. We introduce the higher-dimensional Virasoro algebra and prove a local, universal, form of the Riemann–Roch theorem using Feynman diagrams. We use the concept of a (Jouanoulou) higher-dimensional chiral algebra as developed recently with Gui and Wang. We will remark on applications to superconformal field theory. This project is joint work with Zhengping Gui.

Fri, 14 Nov 2025

12:00 - 13:15
L3

Probabilistic Schwarzian Field Theory

Ilya Losev
(Mathematical Insitute, Oxford)
Abstract
Schwarzian Theory is a quantum field theory which has attracted a lot of attention in the physics literature in the context of two-dimensional quantum gravity, black holes and AdS/CFT correspondence. It is predicted to be universal and arise in many systems with emerging conformal symmetry, most notably in Sachdev–Ye–Kitaev random matrix model and Jackie-–Teitelboim gravity. In this talk we will discuss our recent progress on developing rigorous mathematical foundations of the Schwarzian Field Theory, including rigorous construction of the corresponding measure, calculation of both the partition function and a natural class of correlation functions, and a large deviation principle.
Mon, 24 Nov 2025

15:30 - 16:30
L3

Local convergence and metastability for mean-field particles in a multi-well potential

Pierre Monmarché
(Université Gustave Eiffel)
Abstract

We consider particles following a diffusion process in a multi-well potential and attracted by their barycenter (corresponding to the particle approximation of the Wasserstein flow of a suitable free energy). It is well-known that this process exhibits phase transitions: at high temperature, the mean-field limit has a single stationary solution, the N-particle system converges to equilibrium at a rate independent from N and propagation of chaos is uniform in time. At low temperature, there are several stationary solutions for the non-linear PDE, and the limit of the particle system as N and t go to infinity do not commute. We show that, in the presence of multiple stationary solutions, it is still possible to establish local convergence rates for initial conditions starting in some Wasserstein balls (this is a joint work with Julien Reygner). In terms of metastability for the particle system, we also show that for these initial conditions, the exit time of the empirical distribution from some neighborhood of a stationary solution is exponentially large with N and approximately follows an exponential distribution, and that propagation of chaos holds uniformly over times up to this expected exit time (hence, up to times which are exponentially large with N). Exactly at the critical temperature below which multiple equilibria appear, the situation is somewhat degenerate and we can get uniform in N convergence estimates, but polynomial instead of exponential.

Thu, 27 Nov 2025
17:00
L3

Pfaffian Incidence Geometry and Applications

Martin Lotz
(University of Warwick)
Abstract

Pfaffian functions, and by extension Pfaffian and semi-Pfaffian sets, play a crucial role in various areas of mathematics, including o-minimal theory. Incidence combinatorics has recently experienced a surge of activity, fuelled by the introduction of the polynomial partitioning method of Guth and Katz. While traditionally restricted to simple geometric objects such as points and lines, focus has shifted towards incidence questions involving higher dimensional algebraic or semi-algebraic sets. We present a generalization of the polynomial partitioning method to semi-Pfaffian sets and illustrate how this leads to Pfaffian generalizations of classic results in incidence geometry, such as the Szemerédi-Trotter Theorem. Finally, we outline an application of semi-Pfaffian geometry and Khovanskii's bound to the robustness of neural networks.

Thu, 16 Oct 2025
17:00
L3

Integration in finite terms and exponentially algebraic functions

Jonathan Kirby
(University of East Anglia)
Abstract

The problem of integration in finite terms is the problem of finding exact closed forms for antiderivatives of functions, within a given class of functions. Liouville introduced his elementary functions (built from polynomials, exponentials, logarithms and trigonometric functions) and gave a solution to the problem for that class, nearly 200 years ago. The same problem was shown to be decidable and an algorithm given by Risch in 1969.

We introduce the class of exponentially-algebraic functions, generalising the elementary functions and much more robust than them, and give characterisations of them both in terms of o-minimal local definability and in terms of their types in a reduct of the theory of differentially closed fields.

We then prove the analogue of Liouville's theorem for these exponentially-algebraic functions and give some new decidability results.

This is joint work with Rémi Jaoui, Lyon

Subscribe to L3