Tue, 09 Nov 2021
14:30
L3

TBA

Fede Danieli
(University of Oxford)
Abstract

TBA

Tue, 09 Nov 2021
14:00
L3

TBA

Guiseppe Ughi
(University of Oxford)
Abstract

TBA

Tue, 23 Nov 2021
14:30
L3

A scalable and robust vertex-star relaxation for high-order FEM

Pablo Brubeck
(University of Oxford)
Abstract

The additive Schwarz method with vertex-centered patches and a low-order coarse space gives a p-robust solver for FEM discretizations of symmetric and coercive problems. However, for very high polynomial degree it is not feasible to assemble or factorize the matrices for each patch. In this work we introduce a direct solver for separable patch problems that scales to very high polynomial degree on tensor product cells. The solver constructs a tensor product basis that diagonalizes the blocks in the stiffness matrix for the internal degrees of freedom of each individual cell. As a result, the non-zero structure of the cell matrices is that of the graph connecting internal degrees of freedom to their projection onto the facets. In the new basis, the patch problem is as sparse as a low-order finite difference discretization, while having a sparser Cholesky factorization. We can thus afford to assemble and factorize the matrices for the vertex-patch problems, even for very high polynomial degree. In the non-separable case, the method can be applied as a preconditioner by approximating the problem with a separable surrogate. We apply this approach as a relaxation for the displacement block of mixed formulations of incompressible linear elasticity.

Tue, 23 Nov 2021
14:00
L3

Numerical approximation of viscous contact problems in glaciology

Gonzalo Gonzalez
(University of Oxford)
Abstract

Viscous contact problems describe the time evolution of fluid flows in contact with a surface from which they can detach. These type of problems arise in glaciology when, for example, modelling the evolution of the grounding line of a marine ice sheet or the formation of a subglacial cavity. Such problems are generally modelled as a time dependent viscous Stokes flow with a free boundary and contact boundary conditions. Although these applications are of great importance in glaciology, a systematic study of the numerical approximation of viscous contact problems has not been carried out yet. In this talk, I will present some of the challenges that arise when approximating these problems and some of the ideas we have come up with for overcoming them.

Tue, 12 Oct 2021
14:30
L3

A proposal for the convergence analysis of parallel-in-time algorithms on nonlinear problems

Gian Antonucci
(University of Oxford)
Abstract

Over the last few decades, scientists have conducted extensive research on parallelisation in time, which appears to be a promising way to provide additional parallelism when parallelisation in space saturates before all parallel resources have been used. For the simulations of interest to the Culham Centre of Fusion Energy (CCFE), however, time parallelisation is highly non-trivial, because the exponential divergence of nearby trajectories makes it hard for time-parallel numerical integration to achieve convergence. In this talk we present our results for the convergence analysis of parallel-in-time algorithms on nonlinear problems, focussing on what is widely accepted to be the prototypical parallel-in-time method, the Parareal algorithm. Next, we introduce a new error function to measure convergence based on the maximal Lyapunov exponents, and show how it improves the overall parallel speedup when compared to the traditional check used in the literature. We conclude by mentioning how the above tools can help us design and analyse a novel algorithm for the long-time integration of chaotic systems that uses time-parallel algorithms as a sub-procedure.

Tue, 12 Oct 2021
14:00
L3

Preconditioning for normal equations and least squares

Andy Wathen
(University of Oxford)
Abstract

The solution of systems of linear(ized) equations lies at the heart of many problems in Scientific Computing. In particular for large systems, iterative methods are a primary approach. For many symmetric (or self-adjoint) systems, there are effective solution methods based on the Conjugate Gradient method (for definite problems) or minres (for indefinite problems) in combination with an appropriate preconditioner, which is required in almost all cases. For nonsymmetric systems there are two principal lines of attack: the use of a nonsymmetric iterative method such as gmres, or tranformation into a symmetric problem via the normal equations. In either case, an appropriate preconditioner is generally required. We consider the possibilities here, particularly the idea of preconditioning the normal equations via approximations to the original nonsymmetric matrix. We highlight dangers that readily arise in this approach. Our comments also apply in the context of linear least squares problems as we will explain.

Fri, 03 Dec 2021

14:00 - 15:00
L3

When cardiac imaging meets computational modeling

Dr Vicky Wang
(Department of Radiology Stanford University)
Abstract

Over the past decades, the morbidity and mortality associated with cardiovascular disease have reduced due to advancements in patient care. However, cardiovascular disease remains the world’s leading cause of death, and the prevalence of myocardial pathologies remains significant. Continued advancements in diagnostics and therapeutics are needed to further drive down the social and economic burden of cardiac disease in both developed and developing countries. 

Routine clinical evaluation of patients with cardiovascular disease includes non-invasive imaging, such as echocardiography (echo), cardiac magnetic resonance imaging (MRI), and/or CT, and where appropriate, invasive investigation with cardiac catheterisation However, little clinical information is available regarding the linkage between structural and function remodelling of the heart and the intrinsic biomechanical properties of heart muscle which cannot be measured in patients with cardiovascular diseases. 

The lack of detailed mechanistic understanding about the change in biomechanical properties of heart muscle may play a significant role in non-specific diagnosis and patient management. Bioengineering approaches, such as computational modelling tools, provide the perfect platform to analyze a wealth of clinical data of individual patients in an objective and consistent manner to augment and enrich existing personalized clinical diagnoses and precise treatment planning by building 3D computational model of the patient's heart. 

In my presentation, I will present my research efforts in 1) developing integrative 3D computational modeling platform to enable model-based analysis of medical images of the heart; 2) studying the biomechanical mechanisms underpinning various forms of heart failure using pre-clinica experimental data; 3) applying personalized modeling pipeline to clinical heart failure patient data to non-invasively estimate mechanical properties of the heart muscle on a patient-specific basis; 4) performing in silico simulation of cardiac surgical procedures to evaluate efficacy of mitral clip in treating ischemic mitral regurgitation. 

My presentation aims to showcase the power of combining computational modeling and bioengineering technologies with medical imaging to enrich and enhance precision and personalized medicine. 

Fri, 19 Nov 2021

14:00 - 15:00
L3

Predicting atrial fbrillation treatment outcomes through mathematical modelling, signal processing and machine learning

Dr Caroline Roney
(Kings’ College London)
Abstract

Catheter ablation and antiarrhythmic drug therapy approaches for treatment of atrial fibrillation are sub-optimal. This is in part because it is challenging to predict long-term response to therapy from short-term measurements, which makes it difficult to select optimal patient-specific treatment approaches. Clinical trials identify patient demographics that provide prediction of long-term response to standard treatments across populations. Patient-specific biophysical models can be used to assess novel treatment approaches but are typically applied in small cohorts to investigate the acute response to therapies. Our overall aim is to use machine learning approaches together with patient-specific biophysical simulations to predict long-term atrial fibrillation recurrence after ablation or drug therapy in large populations.

In this talk I will present our methodology for constructing personalised atrial models from patient imaging and electrical data; present results from biophysical simulations of ablation treatment; and finally explain how we are combining these methodologies with machine learning techniques for predicting long-term treatment outcomes.

 

Fri, 12 Nov 2021

14:00 - 15:00
L3

Tools and approaches to build and analyze multiscale computational models in biology -TB as a case study

Prof Denise Kirschner
(Department of Microbiology and Immunology University of Michigan Medical Schoo)
Abstract

In this talk, I will give an overview of our multi-scale models that we have developed to study a number of aspects of the immune response to infection.  Scales that we explore range from molecular to the whole-host scale.  We are also able to study virtual populations and perform simulated clinical trials. We apply these approaches to study Tuberculosis, the disease caused by inhalation of the bacteria, Mycobacterium tuberculosis. It has infected 2 billion people in the world today, and kills 1-2 million people each year, even more than COVID-19. Our goal is to aid in understanding infection dynamics, treatment and vaccines to improve outcomes for this global health burden. I will discuss our frameworks for multi-scale modeling, and the analysis tools and statistical approaches that we have honed to better understand different outcomes at different scales.

Subscribe to L3