Tue, 24 May 2022

10:00 - 12:00
L3

Regularity Theory of Spaces with Lower Ricci Curvature Bounds

Daniele Semola
(Oxford University)
Abstract

The aim of this course is to give an introduction to the regularity theory of non-smooth spaces with lower bounds on the Ricci Curvature. This is a quickly developing field with motivations coming from classical questions in Riemannian and differential geometry and with connections to Probability, Geometric Measure Theory and Partial Differential Equations.


In the lectures we will focus on the non collapsed case, where much sharper results are available, mainly adopting the synthetic approach of the RCD theory, rather than following the original proofs.


The techniques used in this setting have been applied successfully in the study of Minimal surfaces, Elliptic PDEs, Mean curvature flow and Ricci flow and the course might be of interest also for people working in these subjects.

Further Information

Aimed at: people interested on Geometric Analysis, Geometric Measure Theory and regularity theory in Partial Differential Equations.

Prerequisites: Riemannian and Differential Geometry, Metric spaces, basic knowledge of Partial Differential Equations.


Outline of the course:

  • Lecture 1:
    • Quick introduction to non-smooth spaces with lower Ricci curvature bounds [1, 23, 20, 17];
    • Basic properties of spaces with lower Ricci bounds: Bishop-Gromov inequality and doubling metric measure spaces, Bochner’s inequality, splitting theorem [19, 22];
    • Convergence and stability: Gromov-Hausdorff convergence, Gromov pre-compactness theorem, stability and tangent cones [19, 22];
  • Lecture 2:
    • Functional form of the splitting theorem via splitting maps;
    • δ-splitting maps and almost splitting theorem [5, 7];
    • Definition of metric measure cone, stability of RCD property for cones [16];
    • Functional form of the volume cone implies metric cone [12];
    • Almost volume cone implies almost metric cone via stability.
  • Lecture 3:
    • Maximal function type arguments;
    • Existence of Euclidean tangents;
    • Rectifiability and uniqueness of tangents at regular points [18];
    • Volume convergence [9, 13];
    • Tangent cones are metric cones on noncollapsed spaces [5, 6, 13].
  • Lecture 4:
    • Euclidean volume rigidity [9, 6, 13];
    • ε-regularity and classical Reifenberg theorem [6, 15, 7];
    • Harmonic functions on metric measure cones, frequency and separation of variables [7];
    • Transformation theorem for splitting maps [7];
    • Proof of canonical Reifenberg theorem via harmonic splitting maps [7].
  • Lecture 5:
    • Regular and singular sets [6, 13];
    • Stratification of singular sets [6, 13];
    • Examples of singular behaviours [10, 11];
    • Hausdorff dimension bounds via Federer’s dimension reduction [6, 13];
    • Quantitative stratification of singular sets [8];
    • An introduction to quantitative differentiation [3];
    • Cone splitting principle [8];
    • Quantitative singular sets and Minkowski content bounds [8].
  • Lecture 6:
    • The aim of this lecture is to give an introduction to the most recent developments of the regularity theory for non collapsed Ricci limit spaces. We will introduce the notion of neck region in this context and then outline how they have been used to prove rectifiability of singular sets in any codimension for non collapsed Ricci limit spaces by Cheeger-Jiang-Naber [7].
Tue, 26 Apr 2022

10:00 - 12:00
L3

Regularity Theory of Spaces with Lower Ricci Curvature Bounds

Daniele Semola
(Oxford University)
Abstract

The aim of this course is to give an introduction to the regularity theory of non-smooth spaces with lower bounds on the Ricci Curvature. This is a quickly developing field with motivations coming from classical questions in Riemannian and differential geometry and with connections to Probability, Geometric Measure Theory and Partial Differential Equations.


In the lectures we will focus on the non collapsed case, where much sharper results are available, mainly adopting the synthetic approach of the RCD theory, rather than following the original proofs.


The techniques used in this setting have been applied successfully in the study of Minimal surfaces, Elliptic PDEs, Mean curvature flow and Ricci flow and the course might be of interest also for people working in these subjects.

Further Information

Aimed at: people interested on Geometric Analysis, Geometric Measure Theory and regularity theory in Partial Differential Equations.

Prerequisites: Riemannian and Differential Geometry, Metric spaces, basic knowledge of Partial Differential Equations.


Outline of the course:

  • Lecture 1:
    • Quick introduction to non-smooth spaces with lower Ricci curvature bounds [1, 23, 20, 17];
    • Basic properties of spaces with lower Ricci bounds: Bishop-Gromov inequality and doubling metric measure spaces, Bochner’s inequality, splitting theorem [19, 22];
    • Convergence and stability: Gromov-Hausdorff convergence, Gromov pre-compactness theorem, stability and tangent cones [19, 22];
  • Lecture 2:
    • Functional form of the splitting theorem via splitting maps;
    • δ-splitting maps and almost splitting theorem [5, 7];
    • Definition of metric measure cone, stability of RCD property for cones [16];
    • Functional form of the volume cone implies metric cone [12];
    • Almost volume cone implies almost metric cone via stability.
  • Lecture 3:
    • Maximal function type arguments;
    • Existence of Euclidean tangents;
    • Rectifiability and uniqueness of tangents at regular points [18];
    • Volume convergence [9, 13];
    • Tangent cones are metric cones on noncollapsed spaces [5, 6, 13].
  • Lecture 4:
    • Euclidean volume rigidity [9, 6, 13];
    • ε-regularity and classical Reifenberg theorem [6, 15, 7];
    • Harmonic functions on metric measure cones, frequency and separation of variables [7];
    • Transformation theorem for splitting maps [7];
    • Proof of canonical Reifenberg theorem via harmonic splitting maps [7].
  • Lecture 5:
    • Regular and singular sets [6, 13];
    • Stratification of singular sets [6, 13];
    • Examples of singular behaviours [10, 11];
    • Hausdorff dimension bounds via Federer’s dimension reduction [6, 13];
    • Quantitative stratification of singular sets [8];
    • An introduction to quantitative differentiation [3];
    • Cone splitting principle [8];
    • Quantitative singular sets and Minkowski content bounds [8].
  • Lecture 6:
    • The aim of this lecture is to give an introduction to the most recent developments of the regularity theory for non collapsed Ricci limit spaces. We will introduce the notion of neck region in this context and then outline how they have been used to prove rectifiability of singular sets in any codimension for non collapsed Ricci limit spaces by Cheeger-Jiang-Naber [7].
Tue, 17 May 2022

10:00 - 12:00
L3

Regularity Theory of Spaces with Lower Ricci Curvature Bounds

Daniele Semola
(Oxford University)
Abstract

The aim of this course is to give an introduction to the regularity theory of non-smooth spaces with lower bounds on the Ricci Curvature. This is a quickly developing field with motivations coming from classical questions in Riemannian and differential geometry and with connections to Probability, Geometric Measure Theory and Partial Differential Equations.


In the lectures we will focus on the non collapsed case, where much sharper results are available, mainly adopting the synthetic approach of the RCD theory, rather than following the original proofs.


The techniques used in this setting have been applied successfully in the study of Minimal surfaces, Elliptic PDEs, Mean curvature flow and Ricci flow and the course might be of interest also for people working in these subjects.

Further Information

Aimed at: people interested on Geometric Analysis, Geometric Measure Theory and regularity theory in Partial Differential Equations.

Prerequisites: Riemannian and Differential Geometry, Metric spaces, basic knowledge of Partial Differential Equations.


Outline of the course:

  • Lecture 1:
    • Quick introduction to non-smooth spaces with lower Ricci curvature bounds [1, 23, 20, 17];
    • Basic properties of spaces with lower Ricci bounds: Bishop-Gromov inequality and doubling metric measure spaces, Bochner’s inequality, splitting theorem [19, 22];
    • Convergence and stability: Gromov-Hausdorff convergence, Gromov pre-compactness theorem, stability and tangent cones [19, 22];
  • Lecture 2:
    • Functional form of the splitting theorem via splitting maps;
    • δ-splitting maps and almost splitting theorem [5, 7];
    • Definition of metric measure cone, stability of RCD property for cones [16];
    • Functional form of the volume cone implies metric cone [12];
    • Almost volume cone implies almost metric cone via stability.
  • Lecture 3:
    • Maximal function type arguments;
    • Existence of Euclidean tangents;
    • Rectifiability and uniqueness of tangents at regular points [18];
    • Volume convergence [9, 13];
    • Tangent cones are metric cones on noncollapsed spaces [5, 6, 13].
  • Lecture 4:
    • Euclidean volume rigidity [9, 6, 13];
    • ε-regularity and classical Reifenberg theorem [6, 15, 7];
    • Harmonic functions on metric measure cones, frequency and separation of variables [7];
    • Transformation theorem for splitting maps [7];
    • Proof of canonical Reifenberg theorem via harmonic splitting maps [7].
  • Lecture 5:
    • Regular and singular sets [6, 13];
    • Stratification of singular sets [6, 13];
    • Examples of singular behaviours [10, 11];
    • Hausdorff dimension bounds via Federer’s dimension reduction [6, 13];
    • Quantitative stratification of singular sets [8];
    • An introduction to quantitative differentiation [3];
    • Cone splitting principle [8];
    • Quantitative singular sets and Minkowski content bounds [8].
  • Lecture 6:
    • The aim of this lecture is to give an introduction to the most recent developments of the regularity theory for non collapsed Ricci limit spaces. We will introduce the notion of neck region in this context and then outline how they have been used to prove rectifiability of singular sets in any codimension for non collapsed Ricci limit spaces by Cheeger-Jiang-Naber [7].
Tue, 10 May 2022

10:00 - 12:00
L3

Regularity Theory of Spaces with Lower Ricci Curvature Bounds

Daniele Semola
(Oxford University)
Abstract

The aim of this course is to give an introduction to the regularity theory of non-smooth spaces with lower bounds on the Ricci Curvature. This is a quickly developing field with motivations coming from classical questions in Riemannian and differential geometry and with connections to Probability, Geometric Measure Theory and Partial Differential Equations.


In the lectures we will focus on the non collapsed case, where much sharper results are available, mainly adopting the synthetic approach of the RCD theory, rather than following the original proofs.


The techniques used in this setting have been applied successfully in the study of Minimal surfaces, Elliptic PDEs, Mean curvature flow and Ricci flow and the course might be of interest also for people working in these subjects.

Further Information

Aimed at: people interested on Geometric Analysis, Geometric Measure Theory and regularity theory in Partial Differential Equations.

Prerequisites: Riemannian and Differential Geometry, Metric spaces, basic knowledge of Partial Differential Equations.


Outline of the course:

  • Lecture 1:
    • Quick introduction to non-smooth spaces with lower Ricci curvature bounds [1, 23, 20, 17];
    • Basic properties of spaces with lower Ricci bounds: Bishop-Gromov inequality and doubling metric measure spaces, Bochner’s inequality, splitting theorem [19, 22];
    • Convergence and stability: Gromov-Hausdorff convergence, Gromov pre-compactness theorem, stability and tangent cones [19, 22];
  • Lecture 2:
    • Functional form of the splitting theorem via splitting maps;
    • δ-splitting maps and almost splitting theorem [5, 7];
    • Definition of metric measure cone, stability of RCD property for cones [16];
    • Functional form of the volume cone implies metric cone [12];
    • Almost volume cone implies almost metric cone via stability.
  • Lecture 3:
    • Maximal function type arguments;
    • Existence of Euclidean tangents;
    • Rectifiability and uniqueness of tangents at regular points [18];
    • Volume convergence [9, 13];
    • Tangent cones are metric cones on noncollapsed spaces [5, 6, 13].
  • Lecture 4:
    • Euclidean volume rigidity [9, 6, 13];
    • ε-regularity and classical Reifenberg theorem [6, 15, 7];
    • Harmonic functions on metric measure cones, frequency and separation of variables [7];
    • Transformation theorem for splitting maps [7];
    • Proof of canonical Reifenberg theorem via harmonic splitting maps [7].
  • Lecture 5:
    • Regular and singular sets [6, 13];
    • Stratification of singular sets [6, 13];
    • Examples of singular behaviours [10, 11];
    • Hausdorff dimension bounds via Federer’s dimension reduction [6, 13];
    • Quantitative stratification of singular sets [8];
    • An introduction to quantitative differentiation [3];
    • Cone splitting principle [8];
    • Quantitative singular sets and Minkowski content bounds [8].
  • Lecture 6:
    • The aim of this lecture is to give an introduction to the most recent developments of the regularity theory for non collapsed Ricci limit spaces. We will introduce the notion of neck region in this context and then outline how they have been used to prove rectifiability of singular sets in any codimension for non collapsed Ricci limit spaces by Cheeger-Jiang-Naber [7].
Tue, 03 May 2022

10:00 - 12:00
L3

Regularity Theory of Spaces with Lower Ricci Curvature Bounds

Daniele Semola
(Oxford University)
Abstract

The aim of this course is to give an introduction to the regularity theory of non-smooth spaces with lower bounds on the Ricci Curvature. This is a quickly developing field with motivations coming from classical questions in Riemannian and differential geometry and with connections to Probability, Geometric Measure Theory and Partial Differential Equations.


In the lectures we will focus on the non collapsed case, where much sharper results are available, mainly adopting the synthetic approach of the RCD theory, rather than following the original proofs.


The techniques used in this setting have been applied successfully in the study of Minimal surfaces, Elliptic PDEs, Mean curvature flow and Ricci flow and the course might be of interest also for people working in these subjects.

Further Information

Aimed at: people interested on Geometric Analysis, Geometric Measure Theory and regularity theory in Partial Differential Equations.

Prerequisites: Riemannian and Differential Geometry, Metric spaces, basic knowledge of Partial Differential Equations.


Outline of the course:

  • Lecture 1:
    • Quick introduction to non-smooth spaces with lower Ricci curvature bounds [1, 23, 20, 17];
    • Basic properties of spaces with lower Ricci bounds: Bishop-Gromov inequality and doubling metric measure spaces, Bochner’s inequality, splitting theorem [19, 22];
    • Convergence and stability: Gromov-Hausdorff convergence, Gromov pre-compactness theorem, stability and tangent cones [19, 22];
  • Lecture 2:
    • Functional form of the splitting theorem via splitting maps;
    • δ-splitting maps and almost splitting theorem [5, 7];
    • Definition of metric measure cone, stability of RCD property for cones [16];
    • Functional form of the volume cone implies metric cone [12];
    • Almost volume cone implies almost metric cone via stability.
  • Lecture 3:
    • Maximal function type arguments;
    • Existence of Euclidean tangents;
    • Rectifiability and uniqueness of tangents at regular points [18];
    • Volume convergence [9, 13];
    • Tangent cones are metric cones on noncollapsed spaces [5, 6, 13].
  • Lecture 4:
    • Euclidean volume rigidity [9, 6, 13];
    • ε-regularity and classical Reifenberg theorem [6, 15, 7];
    • Harmonic functions on metric measure cones, frequency and separation of variables [7];
    • Transformation theorem for splitting maps [7];
    • Proof of canonical Reifenberg theorem via harmonic splitting maps [7].
  • Lecture 5:
    • Regular and singular sets [6, 13];
    • Stratification of singular sets [6, 13];
    • Examples of singular behaviours [10, 11];
    • Hausdorff dimension bounds via Federer’s dimension reduction [6, 13];
    • Quantitative stratification of singular sets [8];
    • An introduction to quantitative differentiation [3];
    • Cone splitting principle [8];
    • Quantitative singular sets and Minkowski content bounds [8].
  • Lecture 6:
    • The aim of this lecture is to give an introduction to the most recent developments of the regularity theory for non collapsed Ricci limit spaces. We will introduce the notion of neck region in this context and then outline how they have been used to prove rectifiability of singular sets in any codimension for non collapsed Ricci limit spaces by Cheeger-Jiang-Naber [7].
Thu, 11 Nov 2021
14:00
L3

Higher Form Symmetries: Part 2

Dewi Gould
(Oxford University)
Further Information

Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research areas. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 04 Nov 2021

16:00 - 17:00
L3

Blow-up in the supercooled Stefan problem with noise: unstable states and discontinuity of the temperature

ANDREAS SOJMARK
(University of Oxford)
Abstract

Following on from Christoph's talk last week, I will present a version of the supercooled Stefan problem with noise. I will start by discussing the physical intuition and then give a probabilistic representation of solutions. From there, I will identify a simple relationship between the initial heat profile and a single parameter for how the liquid solidifies, which, if violated, forces the temperature to develop a discontinuity in finite time with positive probability. On the other hand, when the relationship is satisfied, the temperature remains globally continuous with probability one. The work is part of a new preprint that should soon be available on arXiv.

 

Thu, 25 Nov 2021

16:00 - 17:00
L3

TBC

BEN HAMBLY
(University of Oxford)
Abstract

TBC

Thu, 11 Nov 2021

16:00 - 17:00
L3

Online Stochastic Optimization of SDEs

JUSTIN SIRIGNANO
(University of Oxford)
Abstract

We develop a new online algorithm for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm optimizes over the parameters in the multi-dimensional SDE model in order to minimize the distance between the model's stationary distribution and the target statistics. We rigorously prove convergence for linear SDE models and present numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the unbiased descent direction under the stationary distribution. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds on a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm. This presentation is based upon research with Ziheng Wang.
 

Thu, 28 Oct 2021

16:00 - 17:00
L3

Optimal bailout strategies and the drift controlled supercooled Stefan problem

CHRISTOPH REISINGER
(University of Oxford)
Abstract

We consider the problem faced by a central bank which bails out distressed financial institutions that pose systemic risk to the banking sector. In a structural default model with mutual obligations, the central agent seeks to inject a minimum amount of cash to a subset of the entities in order to limit defaults to a given proportion of entities. We prove that the value of the agent's control problem converges as the number of defaultable agents goes to infinity, and it satisfies  a drift controlled version of the supercooled Stefan problem. We compute optimal strategies in feedback form by solving numerically a forward-backward coupled system of PDEs. Our simulations show that the agent's optimal strategy is to subsidise banks whose asset values lie in a non-trivial time-dependent region. Finally, we study a linear-quadratic version of the model where instead of the losses, the agent optimises a terminal loss function of the asset values. In this case, we are able to give semi-analytic strategies, which we again illustrate numerically. Joint work with Christa Cuchiero and Stefan Rigger.

Subscribe to L3