Stochastic Analysis and Correction of Floating Point Errors in Monte Carlo Simulations
Abstract
In this talk we will show how the floating point errors in the simulation of SDEs (stochastic differential equations) can be modelled as stochastic. Furthermore, we will show how these errors can be corrected within a multilevel Monte Carlo approach which performs most calculations with low precision, but a few calculations with higher precision. The same procedure can also be used to correct for errors in converting from uniform random numbers to approximate Normal random numbers. Numerical results will be generated on both CPUs (using single/double precision) and GPUs (using half/single precision).
Univariate and Multivariate Polynomials in Numerical Analysis
Abstract
We begin by reviewing numerical methods for problems in one variable and find that univariate polynomials are the starting point for most of them. A similar review in several variables, however, reveals that multivariate polynomials are not so important. Why? On the other hand in pure mathematics, the field of algebraic geometry is precisely the study of multivariate polynomials. Why?
HOCHSCHILD COHOMOLOGY AND GERSTENHABER BRACKET OF A FAMILY OF SUBALGEBRAS OF THE WEYL ALGEBRA
Abstract
For a polynomial $h(x)$ in $F[x]$, where $F$ is any field, let $A$ be the
$F$-algebra given by generators $x$ and $y$ and relation $[y, x]=h$.
This family of algebras include the Weyl algebra, enveloping algebras of
$2$-dimensional Lie algebras, the Jordan plane and several other
interesting subalgebras of the Weyl algebra.
In a joint work in progress with Samuel Lopes, we computed the Hochschild
cohomology $HH^*(A)$ of $A$ and determined explicitly the Gerstenhaber
structure of $HH^*(A)$, as a Lie module over the Lie algebra $HH^1(A)$.
In case $F$ has characteristic $0$, this study has revealed that $HH^*(A)$
has finite length as a Lie module over $HH^1(A)$ with pairwise
non-isomorphic composition factors and the latter can be naturally
extended into irreducible representations of the Virasoro algebra.
Moreover, the whole action can be understood in terms of the partition
formed by the multiplicities of the irreducible factors of the polynomial
$h$.
19th Oxford Cambridge Applied Maths Meeting (aka The Woolly Owl)
[[{"fid":"54202","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-square","data-delta":"1"}}]]