Fri, 25 Oct 2019

14:00 - 15:00
L3

Embryogenesis: a cascade of dynamical systems

Professor Stanislav Shavrtsman
(Dept. of Physical and Biological Engineering, Princeton University)
Abstract

We aim to establish and experimentally test mathematical models of embryogenesis. While the foundation of this research is based on models of isolated developmental events, the ultimate challenge is to formulate and understand dynamical systems encompassing multiple stages of development and multiple levels of regulation. These range from specific chemical reactions in single cells to coordinated dynamics of multiple cells during morphogenesis. Examples of our dynamical systems models of embryogenesis – from the events in the Drosophila egg to the early stages of gastrulation – will be presented. Each of these will demonstrate what had been learned from model analysis and model-driven experiments, and what further research directions are guided by these models.

Fri, 18 Oct 2019

14:00 - 15:00
L3

Cell polarity formation and the dynamics of small G proteins; or, why your Turing bifurcations should always be subcritical

Professor Alan Champneys
(Dept of Engineering Maths University of Bristol)
Abstract

In this talk I shall describe recent work inspired by problems in cell biology, namely how the dynamics of small G-proteins underlies polarity formation. Their dynamics is such that their active membrane bound form diffuses more slowly. Hence you might expect Turing patterns. Yet how do cells form backs and fronts or single isolated patches. In understanding these questions we shall show that the key is to identify the parameter region where Turing bifurcations are sub-critical. What emerges is a unified 2-parameter bifurcation diagram containing pinned fronts, localised spots, localised patterns. This diagram appears in many canonical models such as Schnakenberg and Brusselator, as well as biologically more realistic systems. A link is also found between theories of semi-string interaction asymptotics and so-called homoclinic snaking. I will close with some remarks about relevance to root hair formation and to the importance of subcriticality in biology. 

Tue, 18 Jun 2019
12:00
L3

Wilson-loop form-factors, a new duality

Dr Paul Heslop
(Durham)
Abstract

We find a new duality for form factors of lightlike Wilson loops in planar N=4 super-Yang-Mills theory. The duality maps a form factor involving an n-sided lightlike polygonal super-Wilson loop together with m external on-shell states, to the same type of object but with the edges of the Wilson loop and the external states swapping roles. This relation can essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace where it is equivalent to planar graph duality. However there are some crucial subtleties with the cancellation of spurious poles due to the gauge fixing. They are resolved by finding the correct formulation of the Wilson loop and by careful analytic continuation from Minkowski to Euclidean space. We illustrate all of these subtleties explicitly in the simplest non-trivial NMHV-like case.

Tue, 18 Jun 2019

14:00 - 14:30
L3

Improving the scalability of derivative-free optimisation for nonlinear least-squares problems

Lindon Roberts
(Oxford)
Abstract

In existing techniques for model-based derivative-free optimisation, the computational cost of constructing local models and Lagrange polynomials can be high. As a result, these algorithms are not as suitable for large-scale problems as derivative-based methods. In this talk, I will introduce a derivative-free method based on exploration of random subspaces, suitable for nonlinear least-squares problems. This method has a substantially reduced computational cost (in terms of linear algebra), while still making progress using few objective evaluations.

Mon, 10 Jun 2019
12:45
L3

Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula

Masazumi Honda
(Cambridge University)
Abstract

I will talk about supersymmetric index of 4d N=1 supersymmetric theories on S^1xM_3 which counts supersymmetric states.  
In the first part, I will discuss a general formula to describe an asymptotic behaviour of the index in the limit of shrinking S^1
which we refer to as 4d (refined) supersymmetric Cardy formula. This part is based on arXiv:1611.00380 with Lorenzo Di Pietro.
In the second part, I will apply this formula to black hole physics. I will mainly focus on superconformal index of SU(N) N=4 super Yang-Mills theory
which is expected to be dual to type IIB superstring theory on AdS_5 x S^5. We will see that the index in the large-N limit reproduces the Bekenstein-Hawking entropy
of rotating charged BPS black hole on the gravity side. Our result for finite N makes a prediction to the black hole entropy with full quantum corrections.
The second part is based on arXiv:1901.08091.

Thu, 13 Jun 2019
14:00
L3

Affine Hecke Algebras for p-adic classical groups, local Langlands correspondence and unipotent representations

Volker Heiermann
(Université d'Aix-Marseille)
Abstract

I will review the equivalence of categories of a Bernstein component of a p-adic classical group with the category of right modules over a certain affine Hecke algebra (with parameters) that I obtained previously. The parameters can be made explicit by the parametrization of supercuspidal representations of classical groups obtained by C. Moeglin, using methods of J. Arthur. Via this equivalence, I can show that the category of smooth complex representations of a quasisplit $p$-adic classical group and its pure inner forms is naturally decomposed into subcategories that are equivalent to the tensor product of categories of unipotent representations of classical groups (in the sense of G. Lusztig). All classical groups (general linear, orthogonal, symplectic and unitary groups) appear in this context.
 

Tue, 18 Jun 2019

14:30 - 15:00
L3

PathFinder: a toolbox for oscillatory quadrature

Andrew Gibbs
(KU Leuven)
Abstract

Highly oscillatory integrals arise in a range of wave-based problems. For example, they may occur when a basis for a boundary element has been enriched with oscillatory functions, or as part of a localised approximation to various short-wavelength phenomena. A range of contemporary methods exist for the efficient evaluation of such integrals. These methods have been shown to be very effective for model integrals, but may require expertise and manual intervention for
integrals with higher complexity, and can be unstable in practice.

The PathFinder toolbox aims to develop robust and fully automated numerical software for a large class of oscillatory integrals. In this talk I will introduce the method of numerical steepest descent (the technique upon which PathFinder is based) with a few simple examples, which are also intended to highlight potential causes for numerical instability or manual intervention. I will then explain the novel approaches that PathFinder uses to avoid these. Finally I will present some numerical examples, demonstrating how to use the toolbox, convergence results, and an application to the parabolic wave equation.

Mon, 03 Jun 2019
12:45
L3

Brackets, involutivity and generalised geometry for 4d, N=1 backgrounds

Anthony Ashmore
(Oxford)
Abstract

Supergravity backgrounds are an essential ingredient in string theory or field theories via AdS/CFT. The simplest example of a 4d, N=1 background is the product of four-dimensional Minkowski space with a seven-dimensional manifold with G_2 holonomy in M-theory. For more complicated backgrounds where we allow non-zero fluxes, the supersymmetry conditions can be rephrased in terms of G-structure data. The geometry of these backgrounds is often complicated and their general features are not well understood.

In this talk, I will define the analogue of G_2 geometry for generic 4d, N=1 backgrounds with flux in both type II and eleven-dimensional supergravity. The geometry is characterised by a G-structure in 'exceptional generalised geometry' that includes G_2 structures and Hitchin's generalised geometry as subcases. Supersymmetry is then equivalent to integrability of the structures, which appears as an involutivity condition and a moment map for diffeomorphisms and gauge transformations. I will show how this works in a few simple examples and discuss how this can be used to understand general properties of supersymmetric backgrounds.

 

Subscribe to L3