Mon, 27 Jan 2025
15:30
L3

Adapted optimal transport for stochastic processes

Dr Daniel Bartl
(University of Vienna)
Abstract
In this talk, I will discuss adapted transport theory and the adapted Wasserstein distance, which extend classical transport theory from probability measures to stochastic processes by incorporating the temporal flow of information. This adaptation addresses key limitations of classical transport when dealing with time-dependent data. 
I will highlight how, unlike other topologies for stochastic processes, the adapted Wasserstein distance ensures continuity for fundamental probabilistic operations, including the Doob decomposition, optimal stopping, and stochastic control. Additionally, I will explore how adapted transport preserves many desirable properties of classical transport theory, making it a powerful tool for analyzing stochastic systems.
Mon, 20 Jan 2025
15:30
L3

Heat kernel for critical percolation clusters on the binary tree.

Prof Martin T Barlow
(University of British Columbia )
Abstract
Kesten defined the incipient infinite cluster (IIC) as the limit of large critical finite percolation clusters. We look at the (quenched) heat kernel on the IIC, and will see how it fluctuates due to the randomness of the cluster. 
 
This is a joint work with David Croydon and Takashi Kumagai. 
Fri, 17 Jan 2025

11:00 - 12:00
L3

Do individuals matter? - From psychology, via wound healing and calcium signalling to ecology

Dr Ivo Siekmann
(School of Computer Science and Mathematics, Liverpool University)
Abstract
Should models in mathematical biology be based on detailed representations of individuals - biomolecules, cells, individual members of a population or agents in a social system? Or, alternatively, should individuals be described as identical members of a population, neglecting inter-individual differences? I will explore this question using recent examples from my own research.
 
In the beginning of my presentation I will ask you how you are feeling. Evaluating your answers, I will show how differences in personality can be represented in a model based on differential equations. I will then present an individual-based cell migration model based on the Ornstein-Uhlenbeck process that can help to design textured surfaces that enhance wound healing. In ecosystems, organisms that make decisions based on studying their environment such as fish might interact with populations that are unable of complex behaviour such as plankton. I will explain how piecewise-deterministic Markov (PDMP) models can be used for representing some populations as individuals and others as populations. PDMPs can also be used for modelling how interacting calcium channels generate calcium signals in cells. Finally, I will present a reaction-diffusion model of the photosynthetic activity of phytoplankton that explains how oxygen minimum zones emerge in the ocean.
Tue, 12 Nov 2024

13:00 - 14:00
L3

Mathematrix: Short Talks by Postgraduates

Abstract

Come along to hear from several PhD students and PostDocs about their research. There will also be a Q&A about doing a Master's/PhD and a chance to mingle with postgraduate students. 

Speakers include:

  • Shaked Bader, DPhil Student in Geometric Group Theory, 
  • Eoin Hurley, PostDoc in Combinatorics, 
  • Patricia Lamirande, DPhil Student in Mathematical Biology
Thu, 14 Nov 2024

17:00 - 18:00
L3

The Borel monadic theory of order is decidable

Sven Manthe
(University of Bonn)
Abstract

The monadic second-order theory S1S of (ℕ,<) is decidable (it essentially describes ω-automata). Undecidability of the monadic theory of (ℝ,<) was proven by Shelah. Previously, Rabin proved decidability if the monadic quantifier is restricted to Fσ-sets.
We discuss decidability for Borel sets, or even σ-combinations of analytic sets. Moreover, the Boolean combinations of Fσ-sets form an elementary substructure. Under determinacy hypotheses, the proof extends to larger classes of sets.

Thu, 07 Nov 2024

17:00 - 18:00
L3

Ramification Theory for Henselian Valued Fields

Vaidehee Thatte
(King's College London)
Abstract

Ramification theory serves the dual purpose of a diagnostic tool and treatment by helping us locate, measure, and treat the anomalous behavior of mathematical objects. In the classical setup, the degree of a finite Galois extension of "nice" fields splits up neatly into the product of two well-understood numbers (ramification index and inertia degree) that encode how the base field changes. In the general case, however, a third factor called the defect (or ramification deficiency) can pop up. The defect is a mysterious phenomenon and the main obstruction to several long-standing open problems, such as obtaining resolution of singularities. The primary reason is, roughly speaking, that the classical strategy of "objects become nicer after finitely many adjustments" fails when the defect is non-trivial. I will discuss my previous and ongoing work in ramification theory that allows us to understand and treat the defect.

Tue, 12 Nov 2024

13:00 - 14:00
L3

Mathematrix: Short Talks by PhD Students

Abstract

Several PhD students from the department will give short 5 minute talks on their research. This is also targeted at undergraduates interested in doing PhDs .

Thu, 31 Oct 2024
16:00
L3

Cusp forms of level one and weight zero

George Boxer
(Imperial College London)
Abstract
A theme in number theory is the non-existence of objects which are "too unramified".  For instance, by Minkowski there are no everywhere unramified extensions of Q, and by Fontaine and Abrashkin there are no abelian varieties over Q with everywhere good reduction.  Such results may be viewed (possibly conditionally) through the lens of the Stark-Odlyzko positivity method in the theory of L-functions.
 
After reviewing these things, I will turn to the question of this talk: for n>1 do there exist cuspidal automorphic forms for GL_n which are everywhere unramified and have lowest regular weight (cohomological weight 0)?  For n=2 these are more familiarly holomorphic cuspforms of level 1 and weight 2.  This question may be rephrased in terms of the existence of cuspidal cohomology of GL_n(Z) or (at least conjecturally) in terms of the existence of certain motives or Galois representations.  In 1997, Stephen Miller used the positivity method to show that they do not exist for n<27.  In the other direction, in joint work with Frank Calegari and Toby Gee, we prove that they do exist for some n, including n=79,105, and 106.
Mon, 14 Oct 2024
15:30
L3

A Mean Field Game approach for pollution regulation of competitive firms

Dr Giulia Livieri
(LSE)
Abstract

We develop a model based on mean-field games of competitive firms producing similar goods according to a standard AK model with a depreciation rate of capital generating pollution as a byproduct. Our analysis focuses on the widely-used cap-and-trade pollution regulation. Under this regulation, firms have the flexibility to respond by implementing pollution abatement, reducing output, and participating in emission trading, while a regulator dynamically allocates emission allowances to each firm. The resulting mean-field game is of linear quadratic type and equivalent to a mean-field type control problem, i.e., it is a potential game. We find explicit solutions to this problem through the solutions to differential equations of Riccati type. Further, we investigate the carbon emission equilibrium price that satisfies the market clearing condition and find a specific form of FBSDE of McKean-Vlasov type with common noise. The solution to this equation provides an approximate equilibrium price. Additionally, we demonstrate that the degree of competition is vital in determining the economic consequences of pollution regulation.

 

This is based on joint work with Gianmarco Del Sarto and Marta Leocata. 

https://arxiv.org/pdf/2407.12754

Fri, 22 Nov 2024
11:00
L3

Joint seminar with Mathematical Biology and Ecology Seminar: Bifurcations, pattern formation and multi-stability in non-local models of interacting species

Dr Valeria Giunta
( Dept of Maths Swansea University)
Abstract

Understanding the mechanisms behind the spatial distribution, self-organisation and aggregation of organisms is a central issue in both ecology and cell biology. Since self-organisation at the population level is the cumulative effect of behaviours at the individual level, it requires a mathematical approach to be elucidated.
In nature, every individual, be it a cell or an animal, inspects its territory before moving. The process of acquiring information from the environment is typically non-local, i.e. individuals have the ability to inspect a portion of their territory. In recent years, a growing body of empirical research has shown that non-locality is a key aspect of movement processes, while mathematical models incorporating non-local interactions have received increasing attention for their ability to accurately describe how interactions between individuals and their environment can affect their movement, reproduction rate and well-being. In this talk, I will present a study of a class of advection-diffusion equations that model population movements generated by non-local species interactions. Using a combination of analytical and numerical tools, I will show that these models support a wide variety of spatio-temporal patterns that are able to reproduce segregation, aggregation and time-periodic behaviours commonly observed in real systems. I will also show the existence of parameter regions where multiple stable solutions coexist and hysteresis phenomena.
Overall, I will describe various methods for analysing bifurcations and pattern formation properties of these models, which represent an essential mathematical tool for addressing fundamental questions about the many aggregation phenomena observed in nature.

Subscribe to L3