15:30
15:30
15:30
Heat kernel for critical percolation clusters on the binary tree.
Abstract
Do individuals matter? - From psychology, via wound healing and calcium signalling to ecology
Abstract
Mathematrix: Short Talks by Postgraduates
Abstract
Come along to hear from several PhD students and PostDocs about their research. There will also be a Q&A about doing a Master's/PhD and a chance to mingle with postgraduate students.
Speakers include:
- Shaked Bader, DPhil Student in Geometric Group Theory,
- Eoin Hurley, PostDoc in Combinatorics,
- Patricia Lamirande, DPhil Student in Mathematical Biology
The Borel monadic theory of order is decidable
Abstract
The monadic second-order theory S1S of (ℕ,<) is decidable (it essentially describes ω-automata). Undecidability of the monadic theory of (ℝ,<) was proven by Shelah. Previously, Rabin proved decidability if the monadic quantifier is restricted to Fσ-sets.
We discuss decidability for Borel sets, or even σ-combinations of analytic sets. Moreover, the Boolean combinations of Fσ-sets form an elementary substructure. Under determinacy hypotheses, the proof extends to larger classes of sets.
Ramification Theory for Henselian Valued Fields
Abstract
Ramification theory serves the dual purpose of a diagnostic tool and treatment by helping us locate, measure, and treat the anomalous behavior of mathematical objects. In the classical setup, the degree of a finite Galois extension of "nice" fields splits up neatly into the product of two well-understood numbers (ramification index and inertia degree) that encode how the base field changes. In the general case, however, a third factor called the defect (or ramification deficiency) can pop up. The defect is a mysterious phenomenon and the main obstruction to several long-standing open problems, such as obtaining resolution of singularities. The primary reason is, roughly speaking, that the classical strategy of "objects become nicer after finitely many adjustments" fails when the defect is non-trivial. I will discuss my previous and ongoing work in ramification theory that allows us to understand and treat the defect.
Mathematrix: Short Talks by PhD Students
Abstract
Several PhD students from the department will give short 5 minute talks on their research. This is also targeted at undergraduates interested in doing PhDs .
16:00
Cusp forms of level one and weight zero
Abstract
15:30
A Mean Field Game approach for pollution regulation of competitive firms
Abstract
We develop a model based on mean-field games of competitive firms producing similar goods according to a standard AK model with a depreciation rate of capital generating pollution as a byproduct. Our analysis focuses on the widely-used cap-and-trade pollution regulation. Under this regulation, firms have the flexibility to respond by implementing pollution abatement, reducing output, and participating in emission trading, while a regulator dynamically allocates emission allowances to each firm. The resulting mean-field game is of linear quadratic type and equivalent to a mean-field type control problem, i.e., it is a potential game. We find explicit solutions to this problem through the solutions to differential equations of Riccati type. Further, we investigate the carbon emission equilibrium price that satisfies the market clearing condition and find a specific form of FBSDE of McKean-Vlasov type with common noise. The solution to this equation provides an approximate equilibrium price. Additionally, we demonstrate that the degree of competition is vital in determining the economic consequences of pollution regulation.
This is based on joint work with Gianmarco Del Sarto and Marta Leocata.
11:00
Joint seminar with Mathematical Biology and Ecology Seminar: Bifurcations, pattern formation and multi-stability in non-local models of interacting species
Abstract
Understanding the mechanisms behind the spatial distribution, self-organisation and aggregation of organisms is a central issue in both ecology and cell biology. Since self-organisation at the population level is the cumulative effect of behaviours at the individual level, it requires a mathematical approach to be elucidated.
In nature, every individual, be it a cell or an animal, inspects its territory before moving. The process of acquiring information from the environment is typically non-local, i.e. individuals have the ability to inspect a portion of their territory. In recent years, a growing body of empirical research has shown that non-locality is a key aspect of movement processes, while mathematical models incorporating non-local interactions have received increasing attention for their ability to accurately describe how interactions between individuals and their environment can affect their movement, reproduction rate and well-being. In this talk, I will present a study of a class of advection-diffusion equations that model population movements generated by non-local species interactions. Using a combination of analytical and numerical tools, I will show that these models support a wide variety of spatio-temporal patterns that are able to reproduce segregation, aggregation and time-periodic behaviours commonly observed in real systems. I will also show the existence of parameter regions where multiple stable solutions coexist and hysteresis phenomena.
Overall, I will describe various methods for analysing bifurcations and pattern formation properties of these models, which represent an essential mathematical tool for addressing fundamental questions about the many aggregation phenomena observed in nature.